Measurement of the pp \rightarrow WZ inclusive and differential cross-sections, polarization angles and search for anomalous gauge couplings at $\sqrt{s} = 13$ TeV

CMS PAS SMP-20-041, CMS Collaboration

Ricardo Barrué

Introduction

The CMS detector

Analysis overview

Cross-section measurements

Charge asymmetry measurement

Estimation of boson polarization fractions

Differential cross-section measurements

Limits on anomalous triple gauge couplings

Introduction

The CMS detector

Analysis overview

Cross-section measurements

Charge asymmetry measurement

Estimation of boson polarization fractions

Differential cross-section measurements

Limits on anomalous triple gauge couplings

Introduction

Studied pp o WZ production in the $\ell \bar{\ell} \ \ell'$ final state, ${\cal L}=137~{
m fb}^{-1}$.

- large cross-section and high purity
- sensitive to the parton distribution function (PDF) of the *u* and *d* quarks and to triple gauge couplings (TGC)
- dominant background in BSM searches with similar final states (e.g. arXiv:2106.01676)

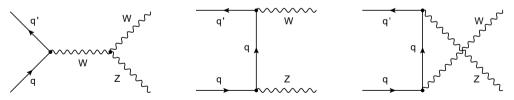


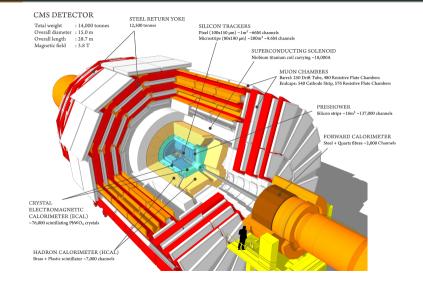
Figure 1: Tree-level Feynman diagrams of WZ production.

Introduction

The CMS detector

Analysis overview

Cross-section measurements


Charge asymmetry measurement

Estimation of boson polarization fractions

Differential cross-section measurements

Limits on anomalous triple gauge couplings

The CMS detector

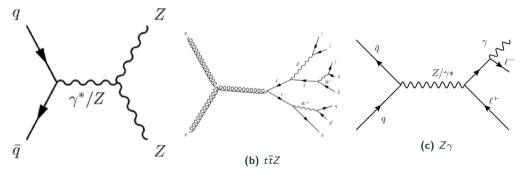
Introduction

The CMS detector

Analysis overview

- Event reconstruction and object selection
- Event selection and categorization

Cross-section measurements


Charge asymmetry measurement

Estimation of boson polarization fractions

Differential cross-section measurements

Limits on anomalous triple gauge couplings

Dominant backgrounds

(a) *ZZ*

Figure 2: Example Feynman diagrams of the dominant background processes

Electrons: charged particle in the tracking system + matching energy depositions in the ECAL and photons along the trajectory

• $p_T > 7$ GeV and $|\eta| < 2.5$

Muons: combination of tracks from the silicon trackers and muon chambers

• $p_T > 5 \text{ GeV}$ and $|\eta| < 2.4$

Isolation and MVA-based identification criteria applied on the leptons (tight leptons)

• isolate prompt from nonprompt contributions

Missing transverse momentum (p_T^{miss}): negative vector-sum of the p_T of all PF objects selected in the event

Triggers and signal region (SR) event selection

Events are selected in real-time by single- and double-lepton triggers.

To obtain a high purity signal region (SR), several cuts are applied:

- 1. three *tight* light leptons
- $\label{eq:2.2} 2. \ \geq 1 \ \text{opposite-sign same-flavour}$ lepton pair
- 3. $p_T(\ell_{Z1}) > 25 \text{ GeV}, p_T(\ell_{Z2}) > 10 \text{ GeV}, p_T(\ell_W) > 25 \text{ GeV}$
- 4. $|M(\ell_{Z1}, \ell_{Z2}) M_Z| < 15 \text{ GeV}$
- 5. $p_T^{\text{miss}} > 30 \text{ GeV}$

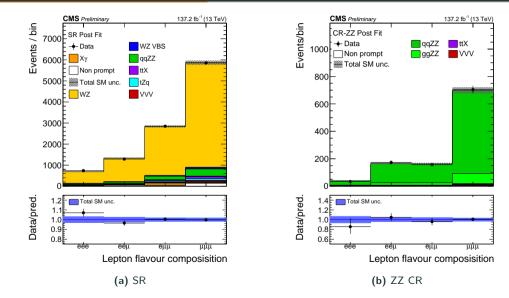
- 6. $M(\ell_{Z1}, \ell_{Z2}, \ell_W) > 100 \text{ GeV}$
- veto events with at least one b-tagged jet
- 8. veto events with a fourth lepton passing looser ID criteria
- 9. min $M(\ell, \ell') > 4$ GeV

Events separated into flavour-composition channels: eee, $ee\mu$, $\mu\mu e$ and $\mu\mu\mu$.

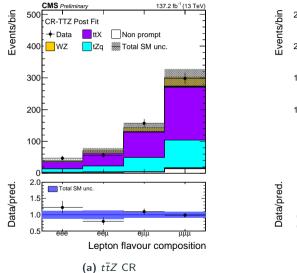
Background control regions (CR)

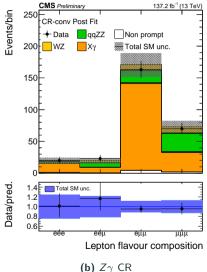
Background control regions (CR) are defined.

• dominated by one of the relevant backgrounds, used to estimate its normalization


ZZ CR:

- require a fourth *tight* lepton, $p_T(\ell) > 10 \text{ GeV}$
- $p_T^{\text{miss}} < 30 \text{ GeV}$


 $t\bar{t}Z$ CR ($t\bar{t}Z$, $t\bar{t}W$, tZq): inverting the *b*-tagged jet veto Conversion CR:


- remove the $|M(\ell_{Z1},\ell_{Z2})-M_Z|$ cut
- $M(\ell_{Z1}, \ell_{Z2}, \ell_W) < 100 \text{ GeV}$

Post-fit distributions I

Post-fit distributions II

Introduction

The CMS detector

Analysis overview

Cross-section measurements

Charge asymmetry measurement

Estimation of boson polarization fractions

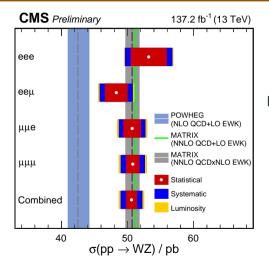
Differential cross-section measurements

Limits on anomalous triple gauge couplings

Yields in WZ SR obtained by a maximum-likelihood fit to yields in the SR and CR.

• measurement performed in the flavour-inclusive and flavour-exclusive categories

Results are extrapolated to a fiducial region (FR), by calculating the ratio between SR and FR efficiencies, ϵ .


$$\sigma_{fid}(pp \to WZ) = \frac{N_{WZ}^{SR}}{\epsilon \mathcal{L}} \left(\frac{N_{fid}^{SR}}{N_{tot}^{SR}}\right)$$
(1)

14

Results are extrapolated to a total region (TR), by calculating the acceptance factor from the total to the fiducial region, A.

$$\sigma_{tot}(pp \to WZ) = \frac{N_{WZ}^{SR}}{BR(W \to \ell\nu)BR(Z \to \ell'\ell')\mathcal{A}\epsilon\mathcal{L}} \left(\frac{N_{fid}^{SR}}{N_{tot}^{SR}}\right)$$
(2)

Total cross-section measurement results

Results in agreement with SM predictions

 favour fixed-order calculations from MATRIX at NNLO QCD with multiplicative combination of NLO EW corrections

Introduction

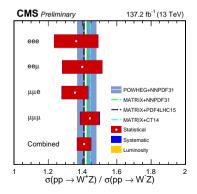
The CMS detector

Analysis overview

Cross-section measurements

Charge asymmetry measurement

Estimation of boson polarization fractions


Differential cross-section measurements

Limits on anomalous triple gauge couplings

Charge asymmetry measurement

Charge asymmetry in WZ production allows access to the u and d quark PDFs.

$$A^{+-}(WZ) = \frac{\sigma_{fid}(pp \to W^+Z)}{\sigma_{fid}(pp \to W^-Z)}$$
(3)

Asymmetry measurement:

- in agreement with NLO and NNLO predictions, similar agreement between both
- strong consistency with the NNPDF30_nlo_as118 PDF set

Used to reduce PDF uncertainties in the cross-section measurements.

Introduction

The CMS detector

Analysis overview

Cross-section measurements

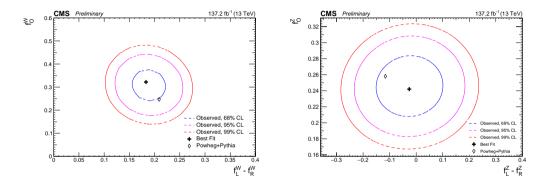
Charge asymmetry measurement

Estimation of boson polarization fractions

Differential cross-section measurements

Limits on anomalous triple gauge couplings

Possible new physics in the WZ production vertex can affect boson spin observables. In this work, the W (Z) polarization angle $\theta^W(\theta^Z)$ is defined in the helicity frame:


• the angular distance between the momenta of the child lepton (negatively charged lepton) in the rest frame of the W (Z) boson and the momenta of the W (Z) boson in the lab frame

One can write the differential cross-sections as a function of $\cos\theta^{W\pm}$ and $\cos\theta^Z$

• depend on the polarization fractions, $f_{L,R,0}^{W,Z}$.

Maximum-likelihood fit to the $\cos \theta^{W\pm}$ and $\cos \theta^{Z}$ distributions in the charge-inclusive and the two different final state charge regions.

Results

Results behave according to SM predictions.

• first observation of longitudinally polarized W bosons $(f_0^W \neq 0)$ in the WZ channel

Introduction

The CMS detector

Analysis overview

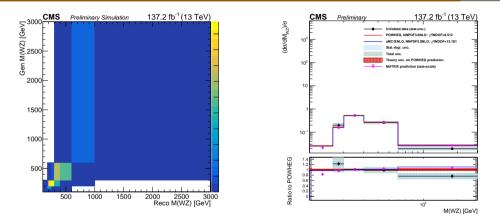
Cross-section measurements

Charge asymmetry measurement

Estimation of boson polarization fractions

Differential cross-section measurements

Limits on anomalous triple gauge couplings


Differential WZ cross-sections measured in the total production phase space as a function of several observables:

- energy scale of WZ production: p_T^Z , p_T^W , $p_T^{\text{lead jet}}$, $N_{textjet}$
- $\cos \theta^{W\pm}$ and $\cos \theta^{Z}$
- M(WZ)

Generator-level distributions are obtained by *unfolding* of the reconstruction-level distributions.

• derive *response* matrices - model the migrations between generator-level and reconstructed-level bins

Results

Figure 6: Response matrix (left) and differential cross-section (right) for the M(WZ) observable Differential cross-section results for this variable are mostly compatible with the SM.

Introduction

The CMS detector

Analysis overview

Cross-section measurements

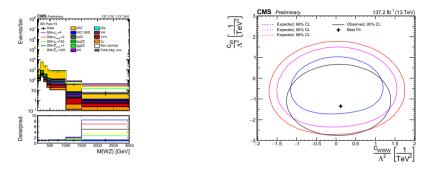
Charge asymmetry measurement

Estimation of boson polarization fractions

Differential cross-section measurements

Limits on anomalous triple gauge couplings

 $W\!Z$ process is sensitive to anomalous TGCs in the $W\!W\!Z$ vertex


- may come from BSM physics directly observable only at higher energies
- can be parametrized by adding dimension-6 operators to the SM WWZ Lagrangian

Taking into account 3 CP-conserving and 2 CP-violating dimension-6 operators.

A 3D (2D) quadratic fit to the M(WZ) distribution is done in a grid of multiple values of the Wilson coefficients of the CP-conserving (CP-violating) operators.

• possible correlations between the CP-conserving terms are studied

Results

Parameter	95% CI, Exp. (TeV $^{-2}$)	95% CI, Obs. (TeV ⁻²)	Best fit, Obs. (TeV^{-2})
$c_{\rm w}/\Lambda^2$	[-2.05, 1.27]	[-2.52, 0.33]	-1.34
$c_{\rm www}/\Lambda^2$	[-1.27, 1.33]	[-1.04, 1.19]	0.15
$c_{\rm b}/\Lambda^2$	[-86.0, 125.0]	[-42.7, 113.0]	43.6
$\tilde{c}_{www}/\Lambda^2$	[-0.76, 0.65]	[-0.62, 0.53]	-0.03
$\tilde{c}_{\rm w}/\Lambda^2$	[-46.1, 46.1]	[-45.9, 45.9]	0.0

Results are within the SM expectations.

Introduction

The CMS detector

Analysis overview

Cross-section measurements

Charge asymmetry measurement

Estimation of boson polarization fractions

Differential cross-section measurements

Limits on anomalous triple gauge couplings

Dataset used: *pp* collisions, $\mathcal{L} = 137$ fb⁻¹ (full LHC Run 2)

MC event generators:

- nominal signal: POWHEG-box at NLO in QCD
- alternative signal: Madgraph5_aMC@NLO at NLO in QCD
- backgrounds: POWHEG and Madgraph5_aMC@NLO at NLO in QCD

Simulated events are interfaced with Pythia8 and Geant4 detector simulation. MATRIX for cross-section calculations at NNLO in QCD

• possible inclusion of NLO EW corrections

Vertices: grouping tracks consistent with originating from the same location in the beam interaction region

• primary collision vertex chosen as the one with largest value of $\sum p_T^2$ of associated jets

Jets: anti- k_t clustering algorithm to the PF candidates

- $p_T > 25 \text{ GeV}, |\eta| < 2.5$
- $\Delta R(\ell, j) < 0.4$
- b-jets are tagged using the DeepCSV algorithm

- single-lepton: 27-35 (24-27) GeV for electrons (muons)
- double-muon: 17 (8) GeV for the leading (subleading) muon
- double-electron: 23 (12) GeV for the leading (subleading) electron
- electron-muon: 23 (8 or 12) *GeV* for the leading lepton (subleading muon or electron)

Systematic uncertainties

Source	2016	2017	2018	Correlation scheme	Processes
Electron efficiency	0 - 3.3	0 - 3.0	0 - 2.8	Partially correlated	All MC
Muon efficiency	0 - 2.4	0 - 2.1	0 - 2.0	Partially correlated	All MC
Muon energy scale	0 - 5	0 - 5	0 - 5	Correlated	All MC
Electron energy scale	0 - 5	0 - 5	0 - 5	Correlated	All MC
Trigger efficiency	-1.0/0.6	-0.7/0.6	-0.7/0.6	Partially correlated	All MC
Jet energy scale	0.9	0.7	1.1	Partially correlated	All MC
B-tagging (heavy)	1.0	0.7	0.9	Correlated	All MC
B-tagging (light)	0.5	0.4	0.3	Correlated	All MC
Pileup	0.9	0.8	0.8	Correlated	ALL MC
ISR	0.2 - 20	0.2 - 20	0.2 - 20	Correlated	WZ
Nonprompt norm.	30	30	30	Correlated	nonprompt
VVV norm.	50	50	50	Correlated	VVV
VH norm.	25	25	25	Correlated	VH
WZ VBS norm.	20	20	20	Correlated	WZ VBS
ZZ	Free	Free	Free	Correlated	ZZ
tīZ norm.	Free	Free	Free	Correlated	tīX
tZq norm.	Free	Free	Free	Correlated	tZq
$X\gamma$ norm.	Free	Free	Free	Correlated	$X\gamma^{-}$
Luminosity	2.5	2.3	2.5	Partially correlated	All MC
Statistical uncertainties	By bin	By bin	By bin	Decorrelated	All MC
Theoretical (PDF + Scale)	0.9	0.9	0.9	Correlated	WZ

Figure 8: Summary of uncertainties in the analysis