Test of the universality of τ and μ lepton coupling in W-boson decays from $t\bar{t}$ events with ATLAS detector

Course on Physics at the LHC

Beatriz Pereira

Professor: Michele Gallinaro
June 15, 2021
Lepton-Flavour Universality

- The Standard Model (SM) is based on the axiom of the universality of the coupling of the different generation of leptons to the electroweak gauge bosons;
- The leptons coupling to gauge boson are flavour-independent;
- The interaction between leptons and a gauge boson measures the same for each lepton.

\[
\begin{align*}
\ell^- & \rightarrow W^- \nu_{\ell} \\
\ell^- & \rightarrow Z \ell
\end{align*}
\]

\[
\begin{align*}
\frac{-ig_W}{2\sqrt{2}} \gamma^\mu (1 - \gamma^5) \\
\frac{-ig_Z}{2\sqrt{2}} \gamma^\mu (-\frac{1}{2} + 2 \sin^2 \theta_W + \frac{1}{2} \gamma^5)
\end{align*}
\]
Introduction

• To test this axiom the ratio of the rate decay of W bosons to τ-leptons and muons is measured:

\[R(\tau/\mu) = \frac{B(W \rightarrow \tau\nu_\tau)}{B(W \rightarrow \mu\nu_\mu)} \rightarrow 1(SM) \]

• This paper uses di-leptonic $t\bar{t}$ events.

Previous results from LEP: $R(\tau/\mu) = 1.070 \pm 0.026$:

• This deviates from the SM expectation by 2.7σ;

• Motivating a precise measurement at the LHC.
Analysis Strategy

- Since $B(t \rightarrow Wb) \approx 100\%$ the $t\bar{t}$ process yields a large sample of W pairs;

- Case study is W boson decay to muons or τ-leptons using a tag and probe approach:
 - One of the W decays is selected through the muon or electron decay (tag lepton);
 - Second W decay is selected through a final state muon (probe muon) where the $R(\tau/\mu)$ is measured:
 - $W \rightarrow \tau \nu_\tau$ and $\mu \nu_\mu$;
 - and charged conjugate;

Muons are distinguished by the displacement of the τ decay vertex and the different muon transverse momentum (p_T).
The ATLAS Experiment
Data and Simulated Samples

- Events analysis: produced on 139 fb^{-1} of data with the ATLAS detector in p-p collisions at 13TeV;
- Monte Carlo (MC) samples of simulated events were produced to model the different SM processes;
- Simulated inelastic p -- p collisions were overlaid on events in all samples to model the pile-up;
- The data and MC simulated events were passed through the same reconstruction and analysis procedures.
Muon Reconstruction and Identification

- Reconstructed using combined fits of Inner Detector (ID) and Muon Spectrometer (MS) tracks;
- Muons must be isolated;
- $|\eta| < 2.5$;
- Muons must have:
 - The same momenta measure in the ID and MS;
 - Originated in the primary vertex (where the W was produced and decayed):
 - Distance of closest approach in the r-z plane of less than 0.3mm;
 - Transverse impact parameter relative to the beamline $|d^\mu_0| < 0.5\text{mm}$.

Tag muons:
- $p_T^\mu > 27.3\text{GeV}$;

Probe muons:
- $p_T^\mu > 5\text{GeV}$.
Electron Reconstruction and Identification

- Reconstructed from inner detector tracks matched to clusters of calorimeter-cell energy clusters;
- Electron be isolated;
- Electrons must have $p_T^e > 27\text{GeV}$;
- $|\eta| < 2.47$ except $1.37 < |\eta| < 1.52$;
- They have to be originated in the primary vertex (where the W was produced and decayed):
 - Distance of closest approach in the r-z plane of less than 0.3mm.
Hadronic Jets Reconstruction and Identification

- Built from energy clusters of calorimeter-cell using anti-k_t algorithm with a radius parameter of 0.4;
- $p_T > 25\text{GeV}$;
- $|\eta| < 2.5$.
- Jets from b-quarks are distinguished based on the decay properties of B-hadrons.
Event Selection

- One electron and one muon (e\rightarrowµ channel) of opposite electric charge or two muons (µ\rightarrowµ channel) with opposite electrical charge;

- Events are triggered by:
 - The electron in the e\rightarrowµ channel;
 - The tag muon in the µ\rightarrowµ channel — such that the probe muons have no trigger bias.

- At least two reconstructed hadronic jets identified as b-jets;

- To reduce Z boson and hadron decay background events are excluded:
 - $85 < m_{\mu\mu} < 95$ GeV from µ\rightarrowµ channel;
 - $m_{ll} < 15$ Gev from both channels.
Background

- \(Z(\rightarrow \mu\mu) + \text{jets}\)
- Probe muons from multi-jets;
Background normalisation — $Z(\rightarrow \mu\mu) + jets$

Important at small values of $|d_0^\mu|$;

The normalization of background in the $\mu - \mu$ channel:

- The same event selection is applied, including the hadronic jet requirements, but without the $m_{\mu\mu}$ criterion;
- The peak of the invariant mass distribution of the dimuon system is fitted over the range $50 < m_{\mu\mu} < 140$ GeV.

The normalisation factor required to scale the simulated sample to data is found to be 1.36 ± 0.01;
Background normalisation — Multijets

Probe muon originate from hadron decays — $\mu_{(had)}$;

Important background at large values of $|d_0^\mu|$ and low values of p_T^μ;

- Scale factors for this background are calculated using a same-sign control region in each channel;

- Normalisation factors to scale the simulation to data for the $\mu_{(had)}$ background: 1.39 (1.37) in the $e - \mu$ ($\mu - \mu$) channels;
Statistical analysis and $R(\tau/\mu)$ measurement

A profile likelihood fit is performed of the probe muon for each channel ($e - \mu$ and $\mu - \mu$);

To extract the ratio of the number of events in which the probe muon orginates from the process $\mu(\tau \to \mu)$, to those which come from $W \to \mu\nu\mu$ (Promptμ):

- The negative-log-likelihood minimisation is performed;
- Both the $t\bar{t}$ and Wt processes contain two W bosons both are treated as signal;
- The fit is setup with two floating parameters: $k(t\bar{t})$ and $R(\tau/\mu)$.

The fit is performed after applying the background normalisation scaling factors derived in the control regions;
Post-fit distribution

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
Signal Region
\(e^{-} \mu^{-}, 5<p_T<10 \text{ GeV} \)
Post-Fit

Data
- Prompt \(\mu \) (top)
- \(\tau \rightarrow \mu \) (top)
- \(\mu \) (hadron decay)
- \(Z \rightarrow \tau \tau \)
- Other SM processes

\(|d_{ij}| \) [mm]

Events / 0.01 mm

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
Signal Region
\(e^{-} \mu^{-}, 10<p_T<20 \text{ GeV} \)
Post-Fit

Data
- Prompt \(\mu \) (top)
- \(\tau \rightarrow \mu \) (top)
- \(\mu \) (hadron decay)
- \(Z \rightarrow \tau \tau \)
- Other SM processes

\(|d_{ij}| \) [mm]

Events / 0.01 mm

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
Signal Region
\(\mu^{-}\mu^{-}, 20<p_T<250 \text{ GeV} \)
Post-Fit

Data
- Prompt \(\mu \) (top)
- \(\tau \rightarrow \mu \) (top)
- \(\mu \) (hadron decay)
- \(Z \rightarrow \tau \tau \)
- Other SM processes

\(|d_{ij}| \) [mm]

Events / 0.01 mm
Results

$R(\tau/\mu) = 0.992 \pm 0.013\text{(total)} [\pm 0.007\text{(stat)} \pm 0.011\text{(syst)}]$
Conclusion

• Measurement of $R(\tau/\mu)$ with a novel method with $t\bar{t}$ events in the dilepton decay;

• The analysis provides a precise test of the fundamental assumption of the universality of the lepton coupling to the vector bosons in the SM;

• The best fit observed value is:

\[R(\tau/\mu) = 0.992 \pm 0.013 [\pm 0.007 \text{ (stat)} \pm 0.011 \text{ (syst)}] \]

• It is in agreement with the SM prediction.
Thank you
Systematic Measures

- Uncertainties on the predicted templates for the μ (prompt) components: These are estimated from the full difference between the templates from Z and $t\bar{t}$ in simulation;

- Top quark modelling uncertainties: These are estimated by comparing various Monte Carlo generator configurations;

- Muon identification and reconstruction uncertainties: These are estimated in dimuon $Z \rightarrow \mu\mu$ and $J/\psi \rightarrow \mu\mu$ data and MC using a tag and probe method;

- Background (μ (had)) scale factor uncertainties.