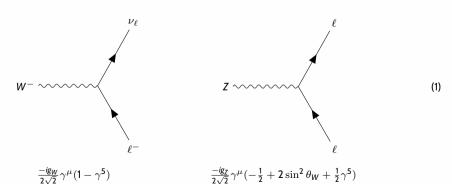
Test of the universality of τ and μ lepton coupling in W-boson decays from $t\bar{t}$ events with ATLAS detector

Course on Physics at the LHC

Beatriz Pereira


Professor: Michele Gallinaro June 15, 2021

Lepton-Flavour Universality

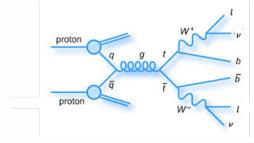
- The Standard Model (SM) is based on the axiom of the universality of the coupling of the different generation of leptons to the electroweak gause bosons;
- The leptons coupling to gauge boson are flavour-independent;
- The interaction between leptons and a gauge boson measures the same for each lepton.

Introduction

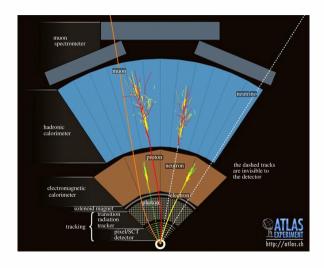
• To test this axiom the ratio of the rate decay of W bosons to τ -leptons and muons is measured:

$$R(au/\mu) = rac{B(W
ightarrow au
u_ au)}{B(W
ightarrow \mu
u_\mu)}
ightarrow 1(SM)$$

• This paper uses di-leptonic $t\bar{t}$ events.


Previous results from LEP: $R(\tau/\mu)$ = 1.070 \pm 0.026:

- This deviates from the SM expectation by 2.7σ ;
- Motivating a precise measurement at the LHC.


Analysis Strategy

- Since $B(t \to Wb) \approx 100\%$ the $t\bar{t}$ process yields a large sample of W pairs;
- Case study is W boson decay to muons or au-leptons using a tag and probe approach:
 - One of the W decays is selected through the muon or electron decay (tag lepton);
 - Second W decay is selected through a final state muon (probe muon) where the $R(\tau/\mu)$ is measured:
 - $W \rightarrow \tau \bar{\nu_{\tau}} \rightarrow \mu \bar{\nu_{\mu}} \nu_{\tau} \bar{\nu_{\tau}};$
 - $W \rightarrow \mu \bar{\nu_{\mu}}$;
 - and charged conjugate;

Muons are distinguished by the displacement of the τ decay vertex and the different muon transverse momentum (p_T) .

The ATLAS Experiment

Data and Simulated Samples

- Events analysis: produced on 139 fb^{-1} of data with the ATLAS detector in p-p collisions at 13TeV;
- Monte Carlo (MC) samples of simulated events were produced to model the different SM processes;
- Simulated inelastic p p collisions were overlaid on events in all samples to model the pile-up;
- The data and MC simulated events were passed through the same reconstruction and analysis procedures.

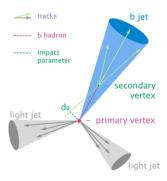
Muon Reconstruction and Identification

- Reconstructed using combined fits of Inner Detector (ID) and Muon Spectrometer (MS) tracks;
- Muons must be isolated:
- $|\eta| <$ 2.5;
- Muons must have:
 - The same momenta measure in the ID and MS:
 - Originated in the primary vertex (where the W was produced and decayed):
 - Distance of closest approach in the r-z plane of less than 0.3mm;
 - Transverse impact parameter relative to the beamline $|d_0^\mu| < 0.5$ mm.

Tag muons:

• $p_T^{\mu} > 27.3$ GeV;

Probe muons:

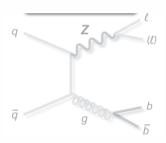

• $p_T^{\mu} > 5$ GeV.

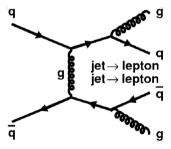
Electron Reconstruction and Identification

- Reconstructed from inner detector tracks matched to clusters of calorimeter-cell energy clusters;
- Electron be isolated:
- Electrons must have $p_T^e > 27 GeV$;
- $|\eta| < 2.47$ except 1.37 $< |\eta| < 1.52$;
- They have to be originated in the primary vertex (where the W was produced and decayed):
 - Distance of closest approach in the r-z plane of less than 0.3mm.

Hadronic Jets Reconstruction and Identification

- Built from energy clusters of calorimeter-cell using anti- k_t algorithm with a radius parameter of 0.4;
- p_T > 25GeV;
- $|\eta| <$ 2.5.
- Jets from b-quarks are distinguished based on the decay properties of B-hadrons.

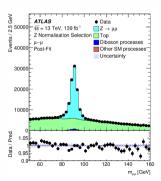



Event Seletion

- One electron and one muon ($e \mu$ channel) of opposite electric charge or two muons ($\mu \mu$ channel) with opposite electrical charge;
- Events are triggered by:
 - The electron in the $e \mu$ channel;
 - The tag muon in the $\mu-\mu$ channel such that the probe muons have no trigger bias.
- At least two reconstructed hadronic jets identified as b-jets;
- To reduce Z boson and hadron decay background events are excluded:
 - 85 < $m_{\mu\mu}$ < 95 GeV from $\mu-\mu$ channel;
 - m_{\parallel} < 15 Gev from both channels.

Background

- $Z(\rightarrow \mu\mu) + jets$
- Probe muons from multi-jets;

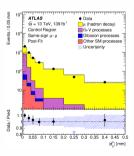

Background normalisation — $Z(\rightarrow \mu\mu) + jets$

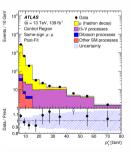
Important at small values of $|d_0^{\mu}|$;

The normalization of background in the $\mu-\mu$ channel:

- ullet The same event selection is applied, including the hadronic jet requirements, but without the ${\sf m}_{\mu\mu}$ criterion;
- The peak of the invariant mass distribution of the dimuon system is fitted over the range 50 < $m_{\mu\mu}$ < 140 GeV.

The normalisation factor required to scale the simulated sample to data is found to be 1.36 \pm 0.01;

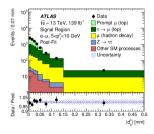


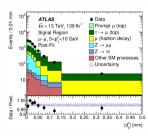

Background normalisation — Multijets

Probe muon originate from hadron decays — $\mu_{(had)}$;

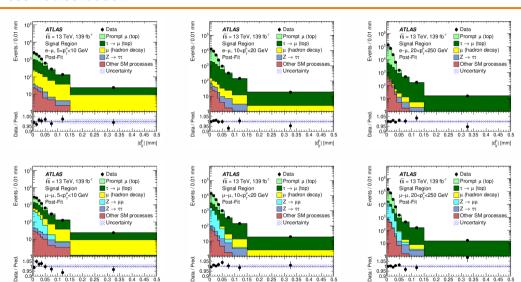
Important background at large values of $|d_0^{\mu}|$ and low values of p_T^{μ} ;

- Scale factors for this background are calculated using a same-sign control region in each channel;
- Normalisation factors to scale the simulation to data for the $\mu_{(had)}$ background: 1.39 (1.37) in the $e-\mu$ ($\mu-\mu$) channels:

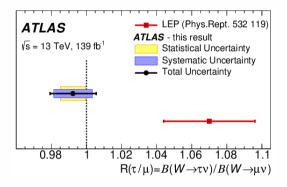

Statistical analysis and $R(\tau/\mu)$ measurement


A profile likelihood fit is performed of the probe muon for each channel ($e - \mu$ and $\mu - \mu$);

To extract the ratio of the number of events in which the probe muon originates from the process $\mu(\tau \to \mu)$, to those which come from $W \to \mu\nu_{\mu}$ (*Prompt* μ):


- · The negative-log-likelihood minimisation is performed;
- Both the $t\bar{t}$ and Wt processes contain two W bosons both are treated as signal;
- The fit is setup with two floating parameters: $k(t\bar{t})$ and $R(\tau/\mu)$.

The fit is performed after applying the background normalisation scaling factors derived in the control regions;


Post-fit distribution

|d_| [mm]

|d_| [mm]

|d_| [mm]

$$\textit{R}(\tau/\mu) = 0.992 \pm 0.013 (\textit{total}) [\pm 0.007 (\textit{stat}) \pm 0.011 (\textit{syst})]$$

Conclusion

- Measurement of $R(\tau/\mu)$ with a novel method with $t\bar{t}$ events in the dilepton decay;
- The analysis provides a precise test of the fundamental assumption of the universality of the lepton coupling to the vector bosons in the SM;
- The best fit observed value is:

$$R(\tau/\mu) = 0.992 \pm 0.013[\pm 0.007(stat) \pm 0.011(syst)]$$

It is in agreement with the SM prediction.

Thank you

Systematic Measures

- Uncertainties on the predicted templates for the $\mu(prompt)$ components: These are estimated from the full difference between the templates from Z and $t\bar{t}$ in simulation;
- Top quark modelling uncertainties: These are estimated by comparing various Monte Carlo generator configurations;
- Muon identification and reconstruction uncertainties: These are estimated in dimuon $Z \to \mu\mu$ and $J/\psi \to \mu\mu$ data and MC using a tag and probe method;
- Background ($\mu(had)$) scale factor uncertainties.