Topics in Particle Physics: Charged Higgs bosons in the Georgi-Machacek model

Anton Kunčinas, Centro de Física Teórica de Partículas – CFTP and Dept de Física Instituto Superior Técnico – IST, Lisboa, Portugal

June 17, 2021

Objective

Objective: present and discuss [2104.04762].

Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton-proton collisions at $\sqrt{s}=13\,\text{TeV}$

The CMS Collaboration*

Abstract

A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton-proton collisions at $\sqrt{s}=13\, {\rm TeV}$ at the LHC, is reported. The data sample corresponds to an integrated luminosity of $137\, {\rm fb}^{-1}$ collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV. The results are interpreted in the context of the Georgi–Machacek model.

Outline

- Georgi-Machacek model:
 - physical spectrum;
 - interactions;
- Model analysis;
- Discussion of CMS searches for charged scalars;

Main results

Variables: $m_{H^{\pm\pm}}=m_{H^\pm}=m_{H_5}=m_5$ and $\mathrm{s_H}=\mathrm{s}_{\beta}$.

.

Main results

Variables: $m_{H^{\pm\pm}}=m_{H^{\pm}}=m_{H_5}=m_5$ and $s_{\rm H}=s_{\beta}$.

Main results

Variables: $m_{H^{\pm\pm}}=m_{H^{\pm}}=m_{H_5}=m_5$ and $s_H=s_{\beta}$.

.

Gauge eigenstates:

SM-like
$$\phi$$
 (Y = 1), real triplet ξ (Y = 0), complex triplet χ (Y = 2),

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \xi = \begin{pmatrix} \xi^+ \\ \xi^0 \\ \xi^- \end{pmatrix}, \quad \chi = \begin{pmatrix} \chi^{++} \\ \chi^+ \\ \chi^0 \end{pmatrix}.$$

Gauge eigenstates:

SM-like ϕ (Y=1), real triplet ξ (Y=0), complex triplet χ (Y=2),

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \xi = \begin{pmatrix} \xi^+ \\ \xi^0 \\ \xi^- \end{pmatrix}, \quad \chi = \begin{pmatrix} \chi^{++} \\ \chi^+ \\ \chi^0 \end{pmatrix}.$$

The $SU(2)_L \otimes SU(2)_R$ covariant forms $(\Psi \to U_{nL} \, \Psi \, U_{nR}^\dagger)$:

$$\begin{split} \Phi &= \left[\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^*, \, \phi \right] = \begin{pmatrix} (\phi^0)^* & \phi^+ \\ -(\phi^+)^* & \phi^0 \end{pmatrix}, \\ X &= \left[\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \chi^*, \, \xi, \, \chi \right] = \begin{pmatrix} (\chi^0)^* & \xi^+ & \chi^{++} \\ -(\chi^+)^* & \xi^0 & \chi^+ \\ (\chi^{++})^* & -(\xi^+)^* & \chi^0 \end{pmatrix}. \end{split}$$

Gauge eigenstates:

SM-like ϕ (Y=1), real triplet ξ (Y=0), complex triplet χ (Y=2),

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \xi = \begin{pmatrix} \xi^+ \\ \xi^0 \\ \xi^- \end{pmatrix}, \quad \chi = \begin{pmatrix} \chi^{++} \\ \chi^+ \\ \chi^0 \end{pmatrix}.$$

The $SU(2)_L \otimes SU(2)_R$ covariant forms $(\Psi \to U_{nL} \, \Psi \, U_{nR}^\dagger)$:

$$\begin{split} & \Phi = \left[\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^*, \, \phi \right] = \begin{pmatrix} (\phi^0)^* & \phi^+ \\ -(\phi^+)^* & \phi^0 \end{pmatrix}, \\ & X = \left[\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \chi^*, \, \xi, \, \chi \right] = \begin{pmatrix} (\chi^0)^* & \xi^+ & \chi^{++} \\ -(\chi^+)^* & \xi^0 & \chi^+ \\ (\chi^{++})^* & -(\xi^+)^* & \chi^0 \end{pmatrix}. \end{split}$$

Gauge eigenstates:

SM-like ϕ (Y=1), real triplet ξ (Y=0), complex triplet χ (Y=2),

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \xi = \begin{pmatrix} \xi^+ \\ \xi^0 \\ \xi^- \end{pmatrix}, \quad \chi = \begin{pmatrix} \chi^{++} \\ \chi^+ \\ \chi^0 \end{pmatrix}.$$

The $SU(2)_L \otimes SU(2)_R$ covariant forms $(\Psi \to U_{nL} \, \Psi \, U_{nR}^\dagger)$:

$$\begin{split} \Phi &= \left[\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^*, \, \phi \right] = \begin{pmatrix} (\phi^0)^* & \phi^+ \\ -(\phi^+)^* & \phi^0 \end{pmatrix}, \\ \mathbf{X} &= \left[\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \chi^*, \, \xi, \, \chi \right] = \begin{pmatrix} (\chi^0)^* & \xi^+ & \chi^{++} \\ -(\chi^+)^* & \xi^0 & \chi^+ \\ (\chi^{++})^* & -(\xi^+)^* & \chi^0 \end{pmatrix}. \end{split}$$

Gauge eigenstates:

SM-like ϕ (Y=1), real triplet ξ (Y=0), complex triplet χ (Y=2),

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \xi = \begin{pmatrix} \xi^+ \\ \xi^0 \\ \xi^- \end{pmatrix}, \quad \chi = \begin{pmatrix} \chi^{++} \\ \chi^+ \\ \chi^0 \end{pmatrix}.$$

The SU(2)_L \otimes SU(2)_R covariant forms ($\Psi \to U_{nL} \Psi U_{nR}^{\dagger}$):

$$\begin{split} \Phi &= \left[\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^*, \, \phi \right] = \begin{pmatrix} (\phi^0)^* & \phi^+ \\ -(\phi^+)^* & \phi^0 \end{pmatrix}, \\ X &= \left[\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \chi^*, \, \xi, \, \chi \right] = \begin{pmatrix} (\chi^0)^* & \xi^+ & \chi^{++} \\ -(\chi^+)^* & \xi^0 & \chi^+ \\ (\chi^{++})^* & -(\xi^+)^* & \chi^0 \end{pmatrix}. \end{split}$$

Phase convention:

$$\chi^{--} = (\chi^{++})^*,$$
 $\phi^- = -(\phi^+)^*, \quad \chi^- = -(\chi^+)^*, \quad \xi^- = -(\xi^+)^*.$

The most general gauge-invariant scalar potential involving these fields that conserves custodial SU(2) is given by

$$\begin{split} V &= \frac{\mu_2^2}{2} \operatorname{Tr} \left(\Phi^\dagger \Phi \right) + \frac{\mu_3^2}{2} \operatorname{Tr} \left(X^\dagger X \right) + \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 + \lambda_2 \operatorname{Tr} \left(\Phi^\dagger \Phi \right) \operatorname{Tr} \left(X^\dagger X \right) \\ &+ \lambda_3 \operatorname{Tr} \left(X^\dagger X X^\dagger X \right) + \lambda_4 \left[\operatorname{Tr} \left(X^\dagger X \right) \right]^2 - \lambda_5 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \\ &- M_1 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \left(U X U^\dagger \right)_{ab} - M_2 \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \left(U X U^\dagger \right)_{ab}. \end{split}$$

The most general gauge-invariant scalar potential involving these fields that conserves custodial SU(2) is given by

$$\begin{split} V &= \frac{\mu_2^2}{2} \operatorname{Tr} \left(\Phi^\dagger \Phi \right) + \frac{\mu_3^2}{2} \operatorname{Tr} \left(X^\dagger X \right) + \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 + \lambda_2 \operatorname{Tr} \left(\Phi^\dagger \Phi \right) \operatorname{Tr} \left(X^\dagger X \right) \\ &+ \lambda_3 \operatorname{Tr} \left(X^\dagger X X^\dagger X \right) + \lambda_4 \left[\operatorname{Tr} \left(X^\dagger X \right) \right]^2 - \lambda_5 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \\ &- M_1 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \left(U X U^\dagger \right)_{ab} - M_2 \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \left(U X U^\dagger \right)_{ab}. \end{split}$$

The most general gauge-invariant scalar potential involving these fields that conserves custodial SU(2) is given by

$$\begin{split} V = & \frac{\mu_2^2}{2} \operatorname{Tr} \left(\Phi^\dagger \Phi \right) + \frac{\mu_3^2}{2} \operatorname{Tr} \left(X^\dagger X \right) + \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 + \lambda_2 \operatorname{Tr} \left(\Phi^\dagger \Phi \right) \operatorname{Tr} \left(X^\dagger X \right) \\ & + \lambda_3 \operatorname{Tr} \left(X^\dagger X X^\dagger X \right) + \lambda_4 \left[\operatorname{Tr} \left(X^\dagger X \right) \right]^2 - \lambda_5 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \\ & - M_1 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \left(U X U^\dagger \right)_{ab} - M_2 \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \left(U X U^\dagger \right)_{ab} \,. \end{split}$$

Let us define,
$$t_{\beta}=\frac{2\sqrt{2}v_{\chi}}{v_{\phi}}=\frac{s_{\beta}v}{c_{\beta}v}, \quad v_{\phi}^2+8v_{\chi}^2\equiv v^2.$$

The most general gauge-invariant scalar potential involving these fields that conserves custodial SU(2) is given by

$$\begin{split} V = & \frac{\mu_2^2}{2} \operatorname{Tr} \left(\Phi^\dagger \Phi \right) + \frac{\mu_3^2}{2} \operatorname{Tr} \left(X^\dagger X \right) + \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 + \lambda_2 \operatorname{Tr} \left(\Phi^\dagger \Phi \right) \operatorname{Tr} \left(X^\dagger X \right) \\ & + \lambda_3 \operatorname{Tr} \left(X^\dagger X X^\dagger X \right) + \lambda_4 \left[\operatorname{Tr} \left(X^\dagger X \right) \right]^2 - \lambda_5 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \\ & - M_1 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \left(U X U^\dagger \right)_{ab} - M_2 \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \left(U X U^\dagger \right)_{ab} \,. \end{split}$$

Let us define,
$$t_{\beta}=\frac{2\sqrt{2}v_{\chi}}{v_{\phi}}=\frac{s_{\beta}v}{c_{\beta}v}, \quad v_{\phi}^2+8v_{\chi}^2\equiv v^2.$$

The most general gauge-invariant scalar potential involving these fields that conserves custodial SU(2) is given by

$$\begin{split} V = & \frac{\mu_2^2}{2} \operatorname{Tr} \left(\Phi^\dagger \Phi \right) + \frac{\mu_3^2}{2} \operatorname{Tr} \left(X^\dagger X \right) + \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 + \lambda_2 \operatorname{Tr} \left(\Phi^\dagger \Phi \right) \operatorname{Tr} \left(X^\dagger X \right) \\ & + \lambda_3 \operatorname{Tr} \left(X^\dagger X X^\dagger X \right) + \lambda_4 \left[\operatorname{Tr} \left(X^\dagger X \right) \right]^2 - \lambda_5 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \\ & - \mathit{M}_1 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \left(\mathit{UXU}^\dagger \right)_{ab} - \mathit{M}_2 \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \left(\mathit{UXU}^\dagger \right)_{ab}. \end{split}$$

Let us define, $t_{\beta}=\frac{2\sqrt{2}v_{\chi}}{v_{\phi}}=\frac{s_{\beta}v}{c_{\beta}v}, \quad v_{\phi}^2+8v_{\chi}^2\equiv v^2.$

There are 7+2 scalars present,

$$\{G^{\pm},\,H_3^{\pm},\,H_5^{\pm}\},\qquad \{H_5^{\pm\pm}\},\qquad \{h,\,H,\,H_5^0\},\qquad \{G^0,\,H_3^0\},$$

The most general gauge-invariant scalar potential involving these fields that conserves custodial SU(2) is given by

$$\begin{split} V = & \frac{\mu_2^2}{2} \operatorname{Tr} \left(\Phi^\dagger \Phi \right) + \frac{\mu_3^2}{2} \operatorname{Tr} \left(X^\dagger X \right) + \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 + \lambda_2 \operatorname{Tr} \left(\Phi^\dagger \Phi \right) \operatorname{Tr} \left(X^\dagger X \right) \\ & + \lambda_3 \operatorname{Tr} \left(X^\dagger X X^\dagger X \right) + \lambda_4 \left[\operatorname{Tr} \left(X^\dagger X \right) \right]^2 - \lambda_5 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \\ & - \mathit{M}_1 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \left(\mathit{UXU}^\dagger \right)_{ab} - \mathit{M}_2 \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \left(\mathit{UXU}^\dagger \right)_{ab}. \end{split}$$

Let us define, $t_{\beta}=\frac{2\sqrt{2}v_{\chi}}{v_{\phi}}=\frac{s_{\beta}v}{c_{\beta}v}, \quad v_{\phi}^2+8v_{\chi}^2\equiv v^2.$

There are 7+2 scalars present,

$$\{ \textit{G}^{\pm}, \, \textit{H}_{3}^{\pm}, \, \textit{H}_{5}^{\pm} \}, \qquad \{ \textit{H}_{5}^{\pm\pm} \}, \qquad \{ \textit{h}, \, \textit{H}, \, \textit{H}_{5}^{0} \}, \qquad \{ \textit{G}^{0}, \, \textit{H}_{3}^{0} \},$$

but only 4 different mass parameters:

$$X: 3 \otimes 3 = 5 \oplus 3 \oplus 1,$$
 $\Phi: 2 \otimes 2 = 3 \oplus 1,$
 $\{m_h, m_H, m_3, m_5\}.$

The most general gauge-invariant scalar potential involving these fields that conserves custodial SU(2) is given by

$$\begin{split} V &= \frac{\mu_2^2}{2} \operatorname{Tr} \left(\Phi^\dagger \Phi \right) + \frac{\mu_3^2}{2} \operatorname{Tr} \left(X^\dagger X \right) + \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 + \lambda_2 \operatorname{Tr} \left(\Phi^\dagger \Phi \right) \operatorname{Tr} \left(X^\dagger X \right) \\ &+ \lambda_3 \operatorname{Tr} \left(X^\dagger X X^\dagger X \right) + \lambda_4 \left[\operatorname{Tr} \left(X^\dagger X \right) \right]^2 - \lambda_5 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \\ &- M_1 \operatorname{Tr} \left(\Phi^\dagger \tau^a \Phi \tau^b \right) \left(U X U^\dagger \right)_{ab} - M_2 \operatorname{Tr} \left(X^\dagger t^a X t^b \right) \left(U X U^\dagger \right)_{ab}. \end{split}$$

Let us define, $t_{\beta}=\frac{2\sqrt{2}v_{\chi}}{v_{\phi}}=\frac{s_{\beta}v}{c_{\beta}v}, \quad v_{\phi}^2+8v_{\chi}^2\equiv v^2.$

There are 7+2 scalars present,

$$\{ \textit{G}^{\pm}, \, \textit{H}_{3}^{\pm}, \, \textit{H}_{5}^{\pm} \}, \qquad \{ \textit{H}_{5}^{\pm\pm} \}, \qquad \{ \textit{h}, \, \textit{H}, \, \textit{H}_{5}^{0} \}, \qquad \{ \textit{G}^{0}, \, \textit{H}_{3}^{0} \},$$

but only 4 different mass parameters:

$$X: 3 \otimes 3 = 5 \oplus 3 \oplus 1,$$
 $\Phi: 2 \otimes 2 = 3 \oplus 1,$
 $\{m_h, m_H, m_3, m_5\}.$

The gauge-scalar bosons interaction are given by:

$$\mathcal{L}_{\mathrm{K}} = rac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} \Phi
ight)^{\dagger} \left(D_{\mu} \Phi
ight)
ight] + rac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} X
ight)^{\dagger} \left(D_{\mu} X
ight)
ight].$$

The gauge-scalar bosons interaction are given by:

$$\mathcal{L}_{\mathrm{K}} = rac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} \Phi
ight)^{\dagger} \left(D_{\mu} \Phi
ight)
ight] + rac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} X
ight)^{\dagger} \left(D_{\mu} X
ight)
ight].$$

The S_5 -V-V interactions are:

$$\{H_5^0W^\pm W^\mp,\ H_5^0ZZ,\ H_5^\pm W^\mp Z,\ H_5^{\pm\pm}W^\mp W^\mp\}.$$

The gauge-scalar bosons interaction are given by:

$$\mathcal{L}_{\mathrm{K}} = \frac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} \Phi \right)^{\dagger} \left(D_{\mu} \Phi \right) \right] + \frac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} X \right)^{\dagger} \left(D_{\mu} X \right) \right].$$

The S_5 -V-V interactions are:

$$\{H_5^0W^\pm W^\mp,\ H_5^0ZZ,\ H_5^\pm W^\mp Z,\ H_5^{\pm\pm}W^\mp W^\mp\}.$$

Of particular interest are:

$$\begin{split} g_{H_5^{\pm}W^{\mp}Z} &= -\frac{\sqrt{2}g^2}{c_W} v_{\chi} = -m_Z s_{\beta}, \\ g_{H_5^{\pm\pm}W^{\mp}W^{\mp}} &= 2g^2 v_{\chi} = \sqrt{2}g m_W s_{\beta}. \end{split}$$

The gauge-scalar bosons interaction are given by:

$$\mathcal{L}_{\mathrm{K}} = \frac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} \Phi \right)^{\dagger} \left(D_{\mu} \Phi \right) \right] + \frac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} X \right)^{\dagger} \left(D_{\mu} X \right) \right].$$

The S_5 -V-V interactions are:

$$\{H_5^0W^\pm W^\mp,\ H_5^0ZZ,\ H_5^\pm W^\mp Z,\ H_5^{\pm\pm}W^\mp W^\mp\}.$$

Of particular interest are:

$$\begin{split} g_{H_5^{\pm}W^{\mp}Z} &= -\frac{\sqrt{2}g^2}{c_W} v_{\chi} = -m_Z \mathbf{s}_{\beta}, \\ g_{H_5^{\pm\pm}W^{\mp}W^{\mp}} &= 2g^2 v_{\chi} = \sqrt{2}g m_W \mathbf{s}_{\beta}. \end{split}$$

The gauge-scalar bosons interaction are given by:

$$\mathcal{L}_{\mathrm{K}} = \frac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} \Phi \right)^{\dagger} \left(D_{\mu} \Phi \right) \right] + \frac{1}{2} \operatorname{\mathsf{Tr}} \left[\left(D_{\mu} X \right)^{\dagger} \left(D_{\mu} X \right) \right].$$

The S_5 -V-V interactions are:

$$\{H_5^0 W^{\pm} W^{\mp}, H_5^0 ZZ, H_5^{\pm} W^{\mp} Z, H_5^{\pm\pm} W^{\mp} W^{\mp}\}.$$

Of particular interest are:

$$\begin{split} g_{H_5^\pm W^\mp Z} &= -\frac{\sqrt{2}g^2}{c_W} v_\chi = -m_Z \mathrm{s}_\beta, \\ g_{H_5^\pm \pm_{W^\mp W^\mp}} &= 2g^2 v_\chi = \sqrt{2}g m_W \mathrm{s}_\beta. \end{split}$$

The five-plet states are fermio-phobic and H_3^\pm is gauge-phobic.

Model analysis

Model input: $\{\mu_3^2, \lambda_2, \lambda_3, \lambda_4, \lambda_5, M_1, M_2\} + m_h$ fixed.

Cuts:

- Theoretical constraints (quartic couplings, potential stability, absence of deeper minima, perturbative unitarity);
- SM-like limit (Γ_h , VVh and ffh);
- GMCALC 1.5.0 [1412.7387]:
 - Indirect experimental constraints (Peskin-Takeuchi parameters, $b \to s \gamma$, $B_s^0 \to \mu^+ \mu^-$);
 - Direct experimental constraints $(H_5^{\pm\pm} \to W^\pm W^\pm \to \text{like-sign dileptons}, Drell-Yan production of <math>H_5^{++}H_5^{--}$ and $H_5^{\pm\pm}H_5^\mp$ with $H_5^{\pm\pm} \to W^\pm W^\pm$, Drell-Yan production of $H_5^0H_5^\pm$ with $H_5^0 \to \gamma\gamma$);

Model analysis

CMS paper analysis: introduction

CMS paper analysis: introduction

The decay width is given by $\Gamma(S_5 o V_1 V_2) \sim f(m_5,\, {\rm s}_\beta).$

CMS paper analysis: introduction

The decay width is given by $\Gamma(S_5 \to V_1 V_2) \sim f(m_5, \, \mathrm{s}_\beta)$.

It is assumed that Br $(H_5^\pm \to W^\pm Z) = 1$ and Br $(H_5^{\pm\pm} \to W^\pm W^\pm) = 1$. Analysis performed for $m_5 \in [200; 3000]$ GeV.

Ĉ

CMS paper analysis: signal and background simulation

Signal samples simulated at LO MADGRAPH5_aMC@NLO2.4.2. Predicted signal cross-sections are taken at NNLO from [LHCHXSWG-2015-001]:

	LO	NLO	NNLO	
QCD scale uncertainty	(7-20)%	(0-4)%	(0-1)%	
PDF uncertainty	(1-3)%			
EW uncertainty	7%			

CMS paper analysis: signal and background simulation

Signal samples simulated at LO MADGRAPH5_aMC@NLO2.4.2. Predicted signal cross-sections are taken at NNLO from [LHCHXSWG-2015-001]:

	LO	NLO	NNLO
QCD scale uncertainty	(7-20)%	(0-4)%	(0-1)%
PDF uncertainty	(1-3)%		
EW uncertainty	7%		

[2005.01173]

CMS paper analysis: signal and background simulation

Signal samples simulated at LO MADGRAPH5_aMC@NLO2.4.2. Predicted signal cross-sections are taken at NNLO from [LHCHXSWG-2015-001]:

	LO	NLO	NNLO
QCD scale uncertainty	(7-20)%	(0-4)%	(0-1)%
PDF uncertainty	(1-3)%		
EW uncertainty	7%		

[2005.01173]

Background contribution: tZq, $t\bar{t}$, tW, $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}\gamma$, VVV, p-p.

Isolated lepton triggers: $p_{\mathrm{T}}^{e} >$ 27 GeV and $p_{\mathrm{T}}^{\mu} >$ 24 GeV.

Isolated lepton triggers: $p_{\mathrm{T}}^{e} >$ 27 GeV and $p_{\mathrm{T}}^{\mu} >$ 24 GeV.

Isolated lepton triggers: $p_{\mathrm{T}}^{e} >$ 27 GeV and $p_{\mathrm{T}}^{\mu} >$ 24 GeV.

Isolated lepton triggers: $p_{\mathrm{T}}^{e} >$ 27 GeV and $p_{\mathrm{T}}^{\mu} >$ 24 GeV.

Isolated lepton triggers: $p_{\rm T}^e > 27$ GeV and $p_{\rm T}^\mu > 24$ GeV.

Isolated lepton triggers: $p_{\rm T}^e > 27$ GeV and $p_{\rm T}^\mu > 24$ GeV.

VBF topology: two/three isolated leptons, at least two jets with $|\eta| < 4.7$, leading jet $\rho_{\rm T}^j > 50$ GeV, $m_{jj} > 500$ GeV, $|\Delta_{\eta_{jj}}| > 2.5$, $\rho_{\rm T}^{\rm miss} > 30$ GeV.

$$\label{eq:miii} \begin{split} |m_{II}-m_Z| &< 15~\mathrm{GeV}, \\ m_{III} &> 100~\mathrm{GeV} \end{split}$$

Isolated lepton triggers: $p_{\rm T}^e > 27$ GeV and $p_{\rm T}^\mu > 24$ GeV.

VBF topology: two/three isolated leptons, at least two jets with $|\eta| < 4.7$, leading jet $\rho_{\rm T}^j > 50$ GeV, $m_{jj} > 500$ GeV, $|\Delta_{\eta_{jj}}| > 2.5$, $\rho_{\rm T}^{\rm miss} > 30$ GeV.

Isolated lepton triggers: $p_{\rm T}^e > 27$ GeV and $p_{\rm T}^\mu > 24$ GeV.

VBF topology: two/three isolated leptons, at least two jets with $|\eta| < 4.7$, leading jet $p_{\mathrm{T}}^{j} > 50$ GeV, $m_{jj} > 500$ GeV, $|\Delta_{\eta_{jj}}| > 2.5$, $p_{\mathrm{T}}^{\mathrm{miss}} > 30$ GeV.

Isolated lepton triggers: $p_{\mathrm{T}}^{e} >$ 27 GeV and $p_{\mathrm{T}}^{\mu} >$ 24 GeV.

VBF topology: two/three isolated leptons, at least two jets with $|\eta| < 4.7$, leading jet $p_{\mathrm{T}}^{j} > 50$ GeV, $m_{jj} > 500$ GeV, $|\Delta_{\eta_{jj}}| > 2.5$, $p_{\mathrm{T}}^{\mathrm{miss}} > 30$ GeV.

CMS paper analysis: signal extraction

A binned maximum-likelihood fit is performed using the $W^\pm W^\pm$ and WZ signal region, and the nonprompt lepton, tZq, and ZZ control regions to discriminate between the signal and the remaining backgrounds.

CMS paper analysis: signal extraction

A binned maximum-likelihood fit is performed using the $W^\pm W^\pm$ and WZ signal region, and the nonprompt lepton, tZq, and ZZ control regions to discriminate between the signal and the remaining backgrounds.

The diboson transverse mass is:

$$m_{\mathrm{T}}^{VV} = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} p_{z,i}\right)^{2}}.$$

CMS paper analysis: signal extraction

A binned maximum-likelihood fit is performed using the $W^\pm W^\pm$ and WZ signal region, and the nonprompt lepton, tZq, and ZZ control regions to discriminate between the signal and the remaining backgrounds.

The diboson transverse mass is:

$$m_{\mathrm{T}}^{VV} = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} p_{z,i}\right)^{2}}.$$

VBF and VBS topologies typically exhibit large values for the dijet mass.

The integrated luminosities of 2016-2018: (2.3-2.5)%. Total Run 2: 1.8%.

The integrated luminosities of 2016-2018: (2.3-2.5)%. Total Run 2: 1.8%.

Simulation of pileup events: 5%.

The integrated luminosities of 2016-2018: (2.3-2.5)%. Total Run 2: 1.8%.

Simulation of pileup events: 5%.

Discrepancies in the lepton reconstruction and identification efficiencies between data and simulation $\approx 1\%.$

The integrated luminosities of 2016-2018: (2.3-2.5)%. Total Run 2: 1.8%.

Simulation of pileup events: 5%.

Discrepancies in the lepton reconstruction and identification efficiencies between data and simulation $\approx 1\%.$

Jet energy scale and resolution: (2-5)%.

The integrated luminosities of 2016-2018: (2.3-2.5)%. Total Run 2: 1.8%.

Simulation of pileup events: 5%.

Discrepancies in the lepton reconstruction and identification efficiencies between data and simulation $\approx 1\%.$

Jet energy scale and resolution: (2-5)%.

Source of uncertainty	$\Delta \mu$	$\Delta \mu$
	background-only	$s_{\rm H} = 1.0 \text{ and } m_{\rm H_5} = 500 {\rm GeV}$
Integrated luminosity	0.002	0.019
Pileup	0.001	0.001
Lepton measurement	0.003	0.033
Trigger	0.001	0.007
JES and JER	0.003	0.006
b tagging	0.001	0.006
Nonprompt rate	0.002	0.002
$W^{\pm}W^{\pm}/WZ$ rate	0.014	0.015
Other prompt background rate	0.002	0.015
Signal rate	_	0.064
Simulated sample size	0.005	0.005
Total systematic uncertainty	0.016	0.078
Statistical uncertainty	0.021	0.044
Total uncertainty	0.027	0.090
·		

CMS paper analysis: results

CMS paper analysis: results

Data comparison

Summary

[2104.04762]:

A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, and further into leptonic decay modes was reported based on the 2016 - 2018 CMS data.

The $W^{\pm}W^{\pm}$ and WZ channels were simultaneously studied by performing a binned maximum-likelihood fit using the transverse mass and dijet invariant mass distributions.

No excess of events with respect to the standard model background predictions was observed.

The observed 95% confidence level limits exclude GM $\rm s_H$ parameter values greater than 0.20–0.35 for the mass range m_{H_5} from 200 to 1500 GeV.