Topics in Particle Physics:
 Charged Higgs bosons in the Georgi-Machacek model

Anton Kunčinas,
Centro de Física Teórica de Partículas - CFTP and
Dept de Física Instituto Superior Técnico - IST,
Lisboa, Portugal

June 17, 2021
CFTP
CENTRO DE FÍSICA
TEÓRICA DAS PARTÍCULAS
técnico lisboa

Objective

Objective: present and discuss [2104.04762].

Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$

The CMS Collaboration*

Abstract

A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$ at the LHC, is reported. The data sample corresponds to an integrated luminosity of $137 \mathrm{fb}^{-1}$ collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV . The results are interpreted in the context of the GeorgiMachacek model.

Outline

- Georgi-Machacek model:
- physical spectrum;
- interactions;
- Model analysis;
- Discussion of CMS searches for charged scalars;

Main results

Variables: $m_{H^{ \pm \pm}}=m_{H^{ \pm}}=m_{H_{5}}=m_{5}$ and $\mathrm{s}_{\mathrm{H}}=\mathrm{s}_{\beta}$.

Main results

[2104.04762]
Variables: $m_{H^{ \pm \pm}}=m_{H^{ \pm}}=m_{H_{5}}=m_{5}$ and $\mathrm{s}_{\mathrm{H}}=\mathrm{s}_{\beta}$.

Main results

Variables: $m_{H^{ \pm \pm}}=m_{H^{ \pm}}=m_{H_{5}}=m_{5}$ and $\mathrm{s}_{\mathrm{H}}=\mathrm{s}_{\beta}$.

Georgi-Machacek model: generalities

Gauge eigenstates: SM-like $\phi(Y=1)$, real triplet $\xi(Y=0)$, complex triplet $\chi(Y=2)$,

$$
\phi=\binom{\phi^{+}}{\phi^{0}}, \quad \xi=\left(\begin{array}{c}
\xi^{+} \\
\xi^{0} \\
\xi^{-}
\end{array}\right), \quad \chi=\left(\begin{array}{c}
\chi^{++} \\
\chi^{+} \\
\chi^{0}
\end{array}\right)
$$

Georgi-Machacek model: generalities

Gauge eigenstates:
SM-like $\phi(Y=1)$, real triplet $\xi(Y=0)$, complex triplet $\chi(Y=2)$,

$$
\phi=\binom{\phi^{+}}{\phi^{0}}, \quad \xi=\left(\begin{array}{c}
\xi^{+} \\
\xi^{0} \\
\xi^{-}
\end{array}\right), \quad \chi=\left(\begin{array}{c}
\chi^{++} \\
\chi^{+} \\
\chi^{0}
\end{array}\right)
$$

The $\operatorname{SU}(2)_{\mathrm{L}} \otimes \operatorname{SU}(2)_{\mathrm{R}}$ covariant forms $\left(\Psi \rightarrow U_{n L} \Psi U_{n R}^{\dagger}\right)$:

$$
\begin{aligned}
& \Phi=\left[\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \phi^{*}, \phi\right]=\left(\begin{array}{cc}
\left(\phi^{0}\right)^{*} & \phi^{+} \\
-\left(\phi^{+}\right)^{*} & \phi^{0}
\end{array}\right), \\
& X=\left[\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) \chi^{*}, \xi, \chi\right]=\left(\begin{array}{ccc}
\left(\chi^{0}\right)^{*} & \xi^{+} & \chi^{++} \\
-\left(\chi^{+}\right)^{*} & \xi^{0} & \chi^{+} \\
\left(\chi^{++}\right)^{*} & -\left(\xi^{+}\right)^{*} & \chi^{0}
\end{array}\right) .
\end{aligned}
$$

Georgi-Machacek model: generalities

Gauge eigenstates:
SM-like $\phi(Y=1)$, real triplet $\xi(Y=0)$, complex triplet $\chi(Y=2)$,

$$
\phi=\binom{\phi^{+}}{\phi^{0}}, \quad \xi=\left(\begin{array}{c}
\xi^{+} \\
\xi^{0} \\
\xi^{-}
\end{array}\right), \quad \chi=\left(\begin{array}{c}
\chi^{++} \\
\chi^{+} \\
\chi^{0}
\end{array}\right)
$$

The $\operatorname{SU}(2)_{\mathrm{L}} \otimes \operatorname{SU}(2)_{\mathrm{R}}$ covariant forms $\left(\Psi \rightarrow U_{n L} \Psi U_{n R}^{\dagger}\right)$:

$$
\begin{aligned}
& \Phi=\left[\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \phi^{*}, \phi\right]=\left(\begin{array}{cc}
\left(\phi^{0}\right)^{*} & \phi^{+} \\
-\left(\phi^{+}\right)^{*} & \phi^{0}
\end{array}\right), \\
& X=\left[\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) \chi^{*}, \xi, \chi\right]=\left(\begin{array}{ccc}
\left(\chi^{0}\right)^{*} & \xi^{+} & \chi^{++} \\
-\left(\chi^{+}\right)^{*} & \xi^{0} & \chi^{+} \\
\left(\chi^{++}\right)^{*} & -\left(\xi^{+}\right)^{*} & \chi^{0}
\end{array}\right) .
\end{aligned}
$$

Georgi-Machacek model: generalities

Gauge eigenstates:
SM-like $\phi(Y=1)$, real triplet $\xi(Y=0)$, complex triplet $\chi(Y=2)$,

$$
\phi=\binom{\phi^{+}}{\phi^{0}}, \quad \xi=\left(\begin{array}{c}
\xi^{+} \\
\xi^{0} \\
\xi^{-}
\end{array}\right), \quad \chi=\left(\begin{array}{c}
\chi^{++} \\
\chi^{+} \\
\chi^{0}
\end{array}\right)
$$

The $\operatorname{SU}(2)_{\mathrm{L}} \otimes \operatorname{SU}(2)_{\mathrm{R}}$ covariant forms $\left(\Psi \rightarrow U_{n L} \Psi U_{n R}^{\dagger}\right)$:

$$
\begin{aligned}
& \Phi=\left[\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \phi^{*}, \phi\right]=\left(\begin{array}{cc}
\left(\phi^{0}\right)^{*} & \phi^{+} \\
-\left(\phi^{+}\right)^{*} & \phi^{0}
\end{array}\right), \\
& X=\left[\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) \chi^{*}, \xi, \chi\right]=\left(\begin{array}{ccc}
\left(\chi^{0}\right)^{*} & \xi^{+} & \chi^{++} \\
-\left(\chi^{+}\right)^{*} & \xi^{0} & \chi^{+} \\
\left(\chi^{++}\right)^{*} & -\left(\xi^{+}\right)^{*} & \chi^{0}
\end{array}\right) .
\end{aligned}
$$

Georgi-Machacek model: generalities

Gauge eigenstates:
SM-like $\phi(Y=1)$, real triplet $\xi(Y=0)$, complex triplet $\chi(Y=2)$,

$$
\phi=\binom{\phi^{+}}{\phi^{0}}, \quad \xi=\left(\begin{array}{c}
\xi^{+} \\
\xi^{0} \\
\xi^{-}
\end{array}\right), \quad \chi=\left(\begin{array}{c}
\chi^{++} \\
\chi^{+} \\
\chi^{0}
\end{array}\right)
$$

The $\operatorname{SU}(2)_{\mathrm{L}} \otimes \operatorname{SU}(2)_{\mathrm{R}}$ covariant forms $\left(\Psi \rightarrow U_{n L} \Psi U_{n R}^{\dagger}\right)$:

$$
\begin{aligned}
& \Phi=\left[\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \phi^{*}, \phi\right]=\left(\begin{array}{cc}
\left(\phi^{0}\right)^{*} & \phi^{+} \\
-\left(\phi^{+}\right)^{*} & \phi^{0}
\end{array}\right), \\
& X=\left[\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) \chi^{*}, \xi, \chi\right]=\left(\begin{array}{ccc}
\left(\chi^{0}\right)^{*} & \xi^{+} & \chi^{++} \\
-\left(\chi^{+}\right)^{*} & \xi^{0} & \chi^{+} \\
\left(\chi^{++}\right)^{*} & -\left(\xi^{+}\right)^{*} & \chi^{0}
\end{array}\right) .
\end{aligned}
$$

Phase convention:

$$
\begin{aligned}
& \chi^{--}=\left(\chi^{++}\right)^{*} \\
& \phi^{-}=-\left(\phi^{+}\right)^{*}, \quad \chi^{-}=-\left(\chi^{+}\right)^{*}, \quad \xi^{-}=-\left(\xi^{+}\right)^{*}
\end{aligned}
$$

Georgi-Machacek model: physical spectrum

The most general gauge-invariant scalar potential involving these fields that conserves custodial $\mathrm{SU}(2)$ is given by

$$
\begin{aligned}
V= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b} .
\end{aligned}
$$

Georgi-Machacek model: physical spectrum

The most general gauge-invariant scalar potential involving these fields that conserves custodial $\operatorname{SU}(2)$ is given by

$$
\begin{aligned}
V= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b} .
\end{aligned}
$$

Georgi-Machacek model: physical spectrum

The most general gauge-invariant scalar potential involving these fields that conserves custodial $\mathrm{SU}(2)$ is given by

$$
\begin{aligned}
V= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b} .
\end{aligned}
$$

Let us define, $\mathrm{t}_{\beta}=\frac{2 \sqrt{2} v_{\chi}}{v_{\phi}}=\frac{\mathrm{s}_{\beta} v}{\mathrm{c}_{\beta} v}, \quad v_{\phi}^{2}+8 v_{\chi}^{2} \equiv v^{2}$.

Georgi-Machacek model: physical spectrum

The most general gauge-invariant scalar potential involving these fields that conserves custodial $\operatorname{SU}(2)$ is given by

$$
\begin{aligned}
V= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b} .
\end{aligned}
$$

Let us define, $\mathrm{t}_{\beta}=\frac{2 \sqrt{2} v_{\chi}}{v_{\phi}}=\frac{\mathrm{s}_{\beta} v}{\mathrm{c}_{\beta} v}, \quad v_{\phi}^{2}+8 v_{\chi}^{2} \equiv v^{2}$.

Georgi-Machacek model: physical spectrum

The most general gauge-invariant scalar potential involving these fields that conserves custodial $\operatorname{SU}(2)$ is given by

$$
\begin{aligned}
V= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b} .
\end{aligned}
$$

Let us define, $\mathrm{t}_{\beta}=\frac{2 \sqrt{2} v_{\chi}}{v_{\phi}}=\frac{\mathrm{s}_{\beta} v}{\mathrm{c}_{\beta} v}, \quad v_{\phi}^{2}+8 v_{\chi}^{2} \equiv v^{2}$.
There are $7+2$ scalars present,

$$
\left\{G^{ \pm}, H_{3}^{ \pm}, H_{5}^{ \pm}\right\}, \quad\left\{H_{5}^{ \pm \pm}\right\}, \quad\left\{h, H, H_{5}^{0}\right\}, \quad\left\{G^{0}, H_{3}^{0}\right\}
$$

Georgi-Machacek model: physical spectrum

The most general gauge-invariant scalar potential involving these fields that conserves custodial $\operatorname{SU}(2)$ is given by

$$
\begin{aligned}
V= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{aligned}
$$

Let us define, $\quad \mathrm{t}_{\beta}=\frac{2 \sqrt{2} v_{\chi}}{v_{\phi}}=\frac{\mathrm{s}_{\beta} v}{\mathrm{c}_{\beta} v}, \quad v_{\phi}^{2}+8 v_{\chi}^{2} \equiv v^{2}$.
There are $7+2$ scalars present,

$$
\left\{G^{ \pm}, H_{3}^{ \pm}, H_{5}^{ \pm}\right\}, \quad\left\{H_{5}^{ \pm \pm}\right\}, \quad\left\{h, H, H_{5}^{0}\right\}, \quad\left\{G^{0}, H_{3}^{0}\right\}
$$

but only 4 different mass parameters:

$$
\begin{array}{lr}
X: & \mathbf{3} \otimes \mathbf{3}=\mathbf{5} \oplus \mathbf{3} \oplus \mathbf{1}, \\
\Phi: & \mathbf{2} \otimes \mathbf{2}=\mathbf{3} \oplus \mathbf{1}, \\
& \left\{m_{h}, m_{H}, m_{3}, m_{5}\right\} .
\end{array}
$$

Georgi-Machacek model: physical spectrum

The most general gauge-invariant scalar potential involving these fields that conserves custodial $\operatorname{SU}(2)$ is given by

$$
\begin{aligned}
V= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{aligned}
$$

Let us define, $\quad \mathrm{t}_{\beta}=\frac{2 \sqrt{2} v_{\chi}}{v_{\phi}}=\frac{\mathrm{s}_{\beta} v}{\mathrm{c}_{\beta} v}, \quad v_{\phi}^{2}+8 v_{\chi}^{2} \equiv v^{2}$.
There are $7+2$ scalars present,

$$
\left\{G^{ \pm}, H_{3}^{ \pm}, H_{5}^{ \pm}\right\}, \quad\left\{H_{5}^{ \pm \pm}\right\}, \quad\left\{h, H, H_{5}^{0}\right\}, \quad\left\{G^{0}, H_{3}^{0}\right\}
$$

but only 4 different mass parameters:

$$
\begin{array}{cr}
X: & \mathbf{3} \otimes \mathbf{3}=\mathbf{5} \oplus \mathbf{3} \oplus \mathbf{1}, \\
\Phi: & \mathbf{2} \otimes \mathbf{2}=\mathbf{3} \oplus \mathbf{1} \\
& \left\{m_{h}, m_{H}, m_{3}, m_{5}\right\}
\end{array}
$$

Georgi-Machacek model: couplings

The gauge-scalar bosons interaction are given by:

$$
\mathcal{L}_{\mathrm{K}}=\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)\right]+\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} X\right)^{\dagger}\left(D_{\mu} X\right)\right]
$$

Georgi-Machacek model: couplings

The gauge-scalar bosons interaction are given by:

$$
\mathcal{L}_{\mathrm{K}}=\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)\right]+\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} X\right)^{\dagger}\left(D_{\mu} X\right)\right]
$$

The $S_{5}-V-V$ interactions are:

$$
\left\{H_{5}^{0} W^{ \pm} W^{\mp}, H_{5}^{0} Z Z, H_{5}^{ \pm} W^{\mp} Z, H_{5}^{ \pm \pm} W^{\mp} W^{\mp}\right\}
$$

Georgi-Machacek model: couplings

The gauge-scalar bosons interaction are given by:

$$
\mathcal{L}_{\mathrm{K}}=\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)\right]+\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} X\right)^{\dagger}\left(D_{\mu} X\right)\right] .
$$

The $S_{5}-V-V$ interactions are:

$$
\left\{H_{5}^{0} W^{ \pm} W^{\mp}, H_{5}^{0} Z Z, H_{5}^{ \pm} W^{\mp} Z, H_{5}^{ \pm \pm} W^{\mp} W^{\mp}\right\}
$$

Of particular interest are:

$$
\begin{aligned}
g_{H_{5}^{ \pm} W \mp Z} & =-\frac{\sqrt{2} g^{2}}{\mathrm{c}_{W}} v_{\chi}=-m_{Z \mathrm{~s}_{\beta}}, \\
g_{H_{5}^{ \pm \pm} W \mp W \mp} & =2 g^{2} v_{\chi}=\sqrt{2} g m_{W \mathrm{~s}_{\beta}} .
\end{aligned}
$$

Georgi-Machacek model: couplings

The gauge-scalar bosons interaction are given by:

$$
\mathcal{L}_{\mathrm{K}}=\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)\right]+\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} X\right)^{\dagger}\left(D_{\mu} X\right)\right] .
$$

The $S_{5}-V-V$ interactions are:

$$
\left\{H_{5}^{0} W^{ \pm} W^{\mp}, H_{5}^{0} Z Z, H_{5}^{ \pm} W^{\mp} Z, H_{5}^{ \pm \pm} W^{\mp} W^{\mp}\right\}
$$

Of particular interest are:

$$
\begin{aligned}
g_{H_{5}^{ \pm} W \mp Z} & =-\frac{\sqrt{2} g^{2}}{\mathrm{c}_{W}} v_{\chi}=-m_{Z \mathrm{~S}_{\beta}}, \\
g_{H_{5}^{ \pm \pm} W \mp W \mp} & =2 g^{2} v_{\chi}=\sqrt{2} g m_{W \mathrm{~S}_{\beta}} .
\end{aligned}
$$

Georgi-Machacek model: couplings

The gauge-scalar bosons interaction are given by:

$$
\mathcal{L}_{\mathrm{K}}=\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)\right]+\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} X\right)^{\dagger}\left(D_{\mu} X\right)\right] .
$$

The $S_{5}-V-V$ interactions are:

$$
\left\{H_{5}^{0} W^{ \pm} W^{\mp}, H_{5}^{0} Z Z, H_{5}^{ \pm} W^{\mp} Z, H_{5}^{ \pm \pm} W^{\mp} W^{\mp}\right\}
$$

Of particular interest are:

$$
\begin{aligned}
g_{H_{5}^{ \pm} W \mp Z} & =-\frac{\sqrt{2} g^{2}}{\mathrm{c}_{W}} v_{\chi}=-m_{Z \mathrm{~s}_{\beta}}, \\
g_{H_{5}^{ \pm \pm} W \mp W \mp} & =2 g^{2} v_{\chi}=\sqrt{2} g m_{W \mathrm{~s}_{\beta}} .
\end{aligned}
$$

The five-plet states are fermio-phobic and $H_{3}^{ \pm}$is gauge-phobic.

Model analysis

Model input: $\left\{\mu_{3}^{2}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, M_{1}, M_{2}\right\}+m_{h}$ fixed.
Cuts:

- Theoretical constraints (quartic couplings, potential stability, absence of deeper minima, perturbative unitarity);
- SM-like limit ($\Gamma_{h}, V V h$ and $f f$);
- GMCALC 1.5.0 [1412.7387]:
- Indirect experimental constraints (Peskin-Takeuchi parameters, $b \rightarrow s \gamma$, $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$);
- Direct experimental constraints $\left(H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm} \rightarrow\right.$ like-sign dileptons, Drell-Yan production of $H_{5}^{++} H_{5}^{--}$and $H_{5}^{ \pm \pm} H_{5}^{\mp}$ with $H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$, Drell-Yan production of $H_{5}^{0} H_{5}^{ \pm}$with $H_{5}^{0} \rightarrow \gamma \gamma$);

Model analysis

CMS paper analysis: introduction

CMS paper analysis: introduction

The decay width is given by $\Gamma\left(S_{5} \rightarrow V_{1} V_{2}\right) \sim f\left(m_{5}, \mathrm{~s}_{\beta}\right)$.

CMS paper analysis: introduction

The decay width is given by $\Gamma\left(S_{5} \rightarrow V_{1} V_{2}\right) \sim f\left(m_{5}, \mathrm{~s}_{\beta}\right)$.

It is assumed that $\operatorname{Br}\left(H_{5}^{ \pm} \rightarrow W^{ \pm} Z\right)=1$ and $\operatorname{Br}\left(H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}\right)=1$.
Analysis performed for $m_{5} \in[200 ; 3000] \mathrm{GeV}$.

CMS paper analysis: signal and background simulation

Signal samples simulated at LO MADGRAPH5_aMC@NLO2.4.2. Predicted signal cross-sections are taken at NNLO from [LHCHXSWG-2015-001]:

	LO	NLO	NNLO
QCD scale uncertainty	$(7-20) \%$	$(0-4) \%$	$(0-1) \%$
PDF uncertainty	$(1-3) \%$		
EW uncertainty	7%		

CMS paper analysis: signal and background simulation

Signal samples simulated at LO MADGRAPH5_aMC@NLO2.4.2. Predicted signal cross-sections are taken at NNLO from [LHCHXSWG-2015-001]:

	LO	NLO	NNLO
QCD scale uncertainty	$(7-20) \%$	$(0-4) \%$	$(0-1) \%$
PDF uncertainty	$(1-3) \%$		
EW uncertainty	7%		

[2005.01173]

CMS paper analysis: signal and background simulation

Signal samples simulated at LO MADGRAPH5_aMC@NLO2.4.2. Predicted signal cross-sections are taken at NNLO from [LHCHXSWG-2015-001]:

	LO	NLO	NNLO
QCD scale uncertainty	$(7-20) \%$	$(0-4) \%$	$(0-1) \%$
PDF uncertainty	$(1-3) \%$		
EW uncertainty	7%		

[2005.01173]
Background contribution: $t Z q, t \bar{t}, t W, t \bar{t} W, t \bar{t} Z, t \bar{t} \gamma, V V V, p-p$.

CMS paper analysis: event selection

Isolated lepton triggers: $p_{\mathrm{T}}^{e}>27 \mathrm{GeV}$ and $p_{\mathrm{T}}^{\mu}>24 \mathrm{GeV}$.

CMS paper analysis: event selection

Isolated lepton triggers: $p_{\mathrm{T}}^{e}>27 \mathrm{GeV}$ and $p_{\mathrm{T}}^{\mu}>24 \mathrm{GeV}$.
VBF topology: two/three isolated leptons, at least two jets with $|\eta|<4.7$, leading jet $p_{\mathrm{T}}^{j}>50 \mathrm{GeV}, m_{j j}>500 \mathrm{GeV},\left|\Delta_{\eta_{j j}}\right|>2.5, p_{\mathrm{T}}^{\text {miss }}>30 \mathrm{GeV}$.

CMS paper analysis: event selection

Isolated lepton triggers: $p_{\mathrm{T}}^{e}>27 \mathrm{GeV}$ and $p_{\mathrm{T}}^{\mu}>24 \mathrm{GeV}$.
VBF topology: two/three isolated leptons, at least two jets with $|\eta|<4.7$, leading jet $p_{\mathrm{T}}^{j}>50 \mathrm{GeV}, m_{j j}>500 \mathrm{GeV},\left|\Delta_{\eta_{j j}}\right|>2.5, p_{\mathrm{T}}^{\text {miss }}>30 \mathrm{GeV}$.

CMS paper analysis: event selection

Isolated lepton triggers: $p_{\mathrm{T}}^{e}>27 \mathrm{GeV}$ and $p_{\mathrm{T}}^{\mu}>24 \mathrm{GeV}$.
VBF topology: two/three isolated leptons, at least two jets with $|\eta|<4.7$, leading jet $p_{\mathrm{T}}^{j}>50 \mathrm{GeV}, m_{j j}>500 \mathrm{GeV},\left|\Delta_{\eta_{j j}}\right|>2.5, p_{\mathrm{T}}^{\text {miss }}>30 \mathrm{GeV}$.

CMS paper analysis: event selection

Isolated lepton triggers: $p_{\mathrm{T}}^{e}>27 \mathrm{GeV}$ and $p_{\mathrm{T}}^{\mu}>24 \mathrm{GeV}$.
VBF topology: two/three isolated leptons, at least two jets with $|\eta|<4.7$, leading jet $p_{\mathrm{T}}^{j}>50 \mathrm{GeV}, m_{j j}>500 \mathrm{GeV},\left|\Delta_{\eta_{j j}}\right|>2.5, p_{\mathrm{T}}^{\text {miss }}>30 \mathrm{GeV}$.

CMS paper analysis: event selection

Isolated lepton triggers: $p_{\mathrm{T}}^{e}>27 \mathrm{GeV}$ and $p_{\mathrm{T}}^{\mu}>24 \mathrm{GeV}$.
VBF topology: two/three isolated leptons, at least two jets with $|\eta|<4.7$, leading jet $p_{\mathrm{T}}^{j}>50 \mathrm{GeV}, m_{j j}>500 \mathrm{GeV},\left|\Delta_{\eta_{j j}}\right|>2.5, p_{\mathrm{T}}^{\text {miss }}>30 \mathrm{GeV}$.

CMS paper analysis: event selection

Isolated lepton triggers: $p_{\mathrm{T}}^{e}>27 \mathrm{GeV}$ and $p_{\mathrm{T}}^{\mu}>24 \mathrm{GeV}$.
VBF topology: two/three isolated leptons, at least two jets with $|\eta|<4.7$, leading jet $p_{\mathrm{T}}^{j}>50 \mathrm{GeV}, m_{j j}>500 \mathrm{GeV},\left|\Delta_{\eta_{j j}}\right|>2.5, p_{\mathrm{T}}^{\text {miss }}>30 \mathrm{GeV}$.

$$
\begin{gathered}
\left|m_{I I}-m_{Z}\right|<15 \mathrm{GeV} \\
m_{I I}>100 \mathrm{GeV}
\end{gathered}
$$

CMS paper analysis: event selection

Isolated lepton triggers: $p_{\mathrm{T}}^{e}>27 \mathrm{GeV}$ and $p_{\mathrm{T}}^{\mu}>24 \mathrm{GeV}$.
VBF topology: two/three isolated leptons, at least two jets with $|\eta|<4.7$, leading jet $p_{\mathrm{T}}^{j}>50 \mathrm{GeV}, m_{j j}>500 \mathrm{GeV},\left|\Delta_{\eta_{j j}}\right|>2.5, p_{\mathrm{T}}^{\text {miss }}>30 \mathrm{GeV}$.

CMS paper analysis: event selection

Isolated lepton triggers: $p_{\mathrm{T}}^{e}>27 \mathrm{GeV}$ and $p_{\mathrm{T}}^{\mu}>24 \mathrm{GeV}$.
VBF topology: two/three isolated leptons, at least two jets with $|\eta|<4.7$, leading jet $p_{\mathrm{T}}^{j}>50 \mathrm{GeV}, m_{j j}>500 \mathrm{GeV},\left|\Delta_{\eta_{j j}}\right|>2.5, p_{\mathrm{T}}^{\text {miss }}>30 \mathrm{GeV}$.

CMS paper analysis: signal extraction

A binned maximum-likelihood fit is performed using the $W^{ \pm} W^{ \pm}$and $W Z$ signal region, and the nonprompt lepton, $t Z q$, and $Z Z$ control regions to discriminate between the signal and the remaining backgrounds.

CMS paper analysis: signal extraction

A binned maximum-likelihood fit is performed using the $W^{ \pm} W^{ \pm}$and $W Z$ signal region, and the nonprompt lepton, $t Z q$, and $Z Z$ control regions to discriminate between the signal and the remaining backgrounds.

The diboson transverse mass is:

$$
m_{\mathrm{T}}^{V V}=\sqrt{\left(\sum_{i} E_{i}\right)^{2}-\left(\sum_{i} p_{z, i}\right)^{2}}
$$

CMS paper analysis: signal extraction

A binned maximum-likelihood fit is performed using the $W^{ \pm} W^{ \pm}$and $W Z$ signal region, and the nonprompt lepton, $t Z q$, and $Z Z$ control regions to discriminate between the signal and the remaining backgrounds.

The diboson transverse mass is:

$$
m_{\mathrm{T}}^{V V}=\sqrt{\left(\sum_{i} E_{i}\right)^{2}-\left(\sum_{i} p_{z, i}\right)^{2}}
$$

VBF and VBS topologies typically exhibit large values for the dijet mass.

CMS paper analysis: systematic uncertainties

The integrated luminosities of 2016-2018: (2.3-2.5)\%. Total Run 2: 1.8%.

CMS paper analysis: systematic uncertainties

The integrated luminosities of 2016-2018: $(2.3-2.5) \%$. Total Run 2: 1.8%.
Simulation of pileup events: 5%.

CMS paper analysis: systematic uncertainties

The integrated luminosities of 2016-2018: $(2.3-2.5) \%$. Total Run 2: 1.8%.
Simulation of pileup events: 5%.
Discrepancies in the lepton reconstruction and identification efficiencies between data and simulation $\approx 1 \%$.

CMS paper analysis: systematic uncertainties

The integrated luminosities of 2016-2018: $(2.3-2.5) \%$. Total Run 2: 1.8%.
Simulation of pileup events: 5%.
Discrepancies in the lepton reconstruction and identification efficiencies between data and simulation $\approx 1 \%$.

Jet energy scale and resolution: (2-5)\%.

CMS paper analysis: systematic uncertainties

The integrated luminosities of 2016-2018: (2.3-2.5)\%. Total Run 2: 1.8\%.
Simulation of pileup events: 5%.
Discrepancies in the lepton reconstruction and identification efficiencies between data and simulation $\approx 1 \%$.

Jet energy scale and resolution: (2-5)\%.

Source of uncertainty	$\Delta \mu$ background-only	$s_{\mathrm{H}}=1.0$ and $m_{\mathrm{H}_{5}}=500 \mathrm{GeV}$
Integrated luminosity	0.002	0.019
Pileup	0.001	0.001
Lepton measurement	0.003	0.033
Trigger	0.001	0.007
JES and JER	0.003	0.006
b tagging	0.001	0.006
Nonprompt rate	0.002	0.002
$\mathrm{~W}^{ \pm} \mathrm{W}^{ \pm} / \mathrm{WZ}$ rate	0.014	0.015
Other prompt background rate $^{0.002}$	0.015	
Signal rate	-	0.064
Simulated sample size	0.005	0.005
Total systematic uncertainty	0.016	0.078
Statistical uncertainty	0.021	0.044
Total uncertainty	0.027	0.090

CMS paper analysis: results

[2104.04762]

CMS paper analysis: results

Data comparison

Summary

[2104.04762]:
A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, and further into leptonic decay modes was reported based on the 2016-2018 CMS data.

The $W^{ \pm} W^{ \pm}$and $W Z$ channels were simultaneously studied by performing a binned maximum-likelihood fit using the transverse mass and dijet invariant mass distributions.

No excess of events with respect to the standard model background predictions was observed.

The observed 95% confidence level limits exclude GM sH parameter values greater than $0.20-0.35$ for the mass range $m_{H_{5}}$ from 200 to 1500 GeV .

