IAS2021: highlights

M. Koratzinos FCC-ee Optics Design Meeting 22/1/2021

introduction

- A very eclectic and biased review of the IAS conference
- I have only things that:
 - I noticed
 - That I was interested in
 - That show a deviation from my preconceptions

Final focus quadrupoles

- Two main units on each side of the IP and for each beam, e⁺ (P)and e⁻(E): QC1LE, QC2LE, QC1RE, QC2RE, QC1LP, QC2LP, QC1RP, QC2RP
- QC1 is inside the detector and itself comprises three units per side per beam: QC1L1P, QC1L2P,QC1L3P, QC1L1P, QC1L2P,QC1L3P, QC1L1E, QC1L2E,QC1L3E, QC1L1E, QC1L2E,QC1L3E
- There are 5X2X2=20 single aperture units in total

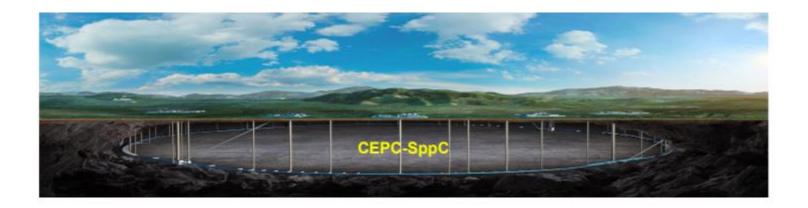
From the FCC CDR update 13	3/12/2019, Katsunobu Oide
----------------------------	---------------------------

	Start position	Length	B'@Z	B'@W	B' @ H	B' @ tt
	(m)	(m)	(T/m)	(T/m)	(T/m)	(T/m)
QC2L2	-8.44	1.25	25.05	43.82	61.30	69.50
QC2L1	-7.11	1.25	-0.18	0.00	7.32	56.85
QC1L3	-5.56	1.25	-19.35	-34.38	-53.08	-99.98
QC1L2	-4.23	1.25	-18.57	-32.94	-53.07	-99.98
QC1L1.1	-2.9	0.7	-40.95	-70.00	-99.71	-95.39
QC1L1.2	2.2	0.7	-40.95	-70.00	-99.71	-95.39
QC1R2	2.98	1.25	-25.44	-37.25	-51.94	-100.00
QC1R3	4.31	1.25	-19.54	-39.51	-53.65	-91.87
QC2R1	5.86	1.25	14.64	16.85	-2.65	37.19
QC2R2	7.19	1.25	19.50	44.32	67.52 M. Korat	94.43

- Optics design is such that E and P quads have the same strength
- Maximum strength is 100T/m
- The most difficult element is QC1L1, the closest to the beam and where the E and P quads are closer together

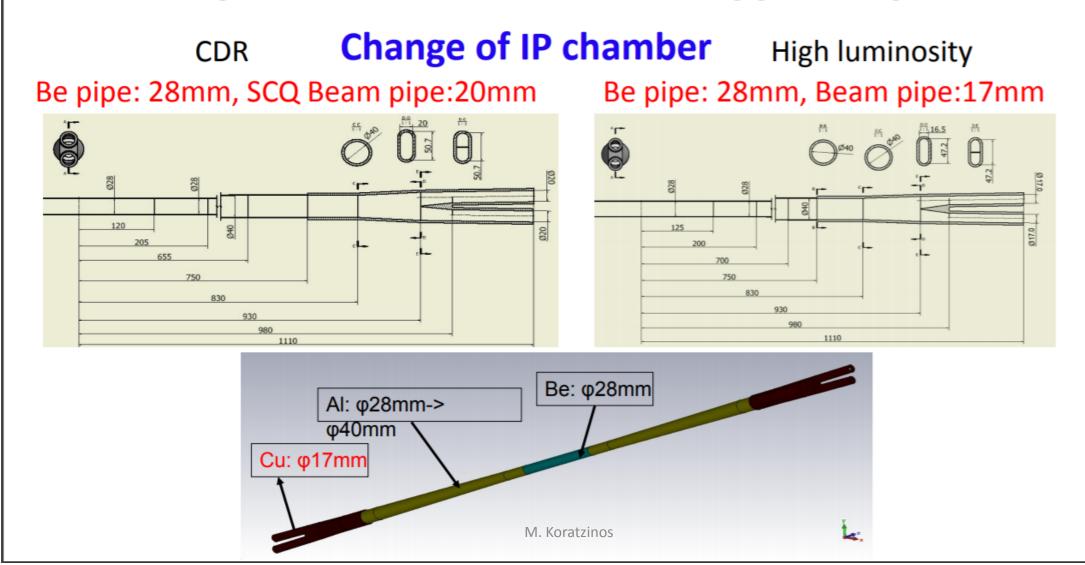
The updated parameters are rather different for QC1L1: its length is now 70cm from 120cm

M. Koratzinos


My impression regarding the CEPC

- A lot of hardware
- Very aggressive design more aggressive than FCC-ee!
 - L* less than FCC-ee: 1.9m
 - B field of detector higher than FCC-ee: 3T
 - Beam pipe diameter @FF quads smaller than FCC-ee: 17mm
 - FF quad strength higher than FCC-ee ~140T/m
 - (beam pipe diameter @ the IP: 28mm)
- Still some errors

CEPC Accelerator Status and TDR Progress


J. Gao

IHEP On behalf of CEPC Group

HKIAS HEP Conference, Jan. 18, 2021

High Luminosity Scheme at Higgs energy

Imperfection and correction for CEPC

Bin Wang (on the behalf of the CEPC error correction team) Institute of High Energy Physics

> 01.19 2021

THE IAS PROGRAM ON HIGH ENERGY PHYSICS (HEP 2021)

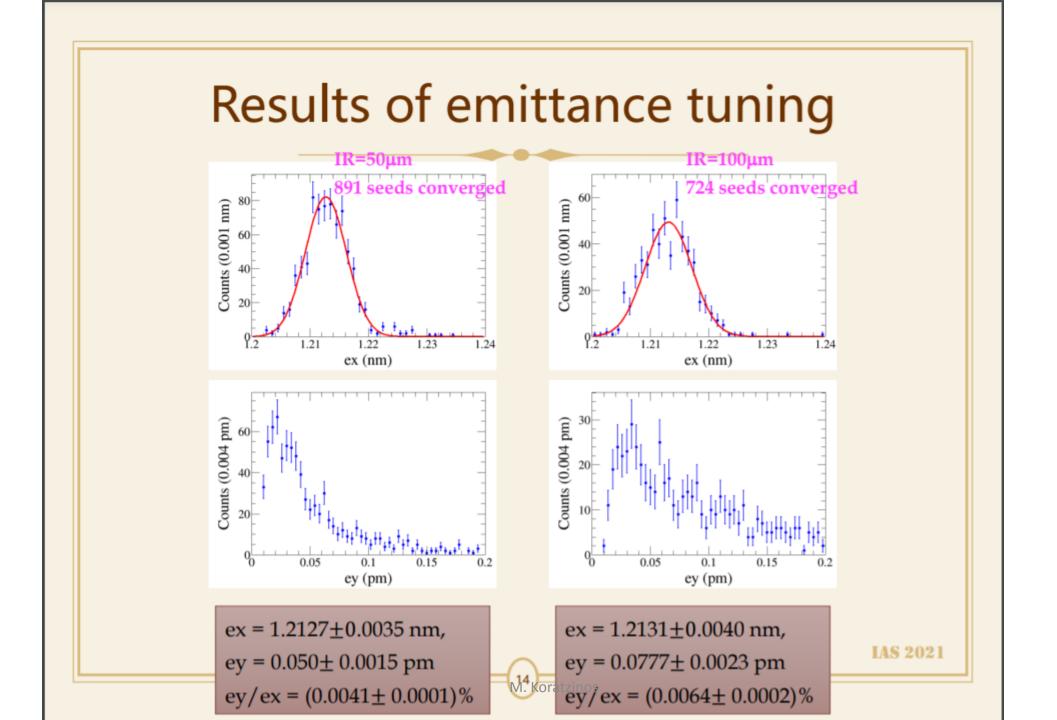
Similar assumptions to ours?

M. Koratzinos

Errors definition and challenges

IR=50µm

Component	$\Delta x (mm)$	Δy (mm)	$\Delta \theta_{z}$ (mrad)	Field error
Dipole	0.10	0.10	0.1	0.01%
Arc Quadrupole	0.10	0.10	0.1	0.02%
IR Quadrupole	0.05	0.05	0.05	
Sextupole	0.10	0.10	0.1	


IR=100µm

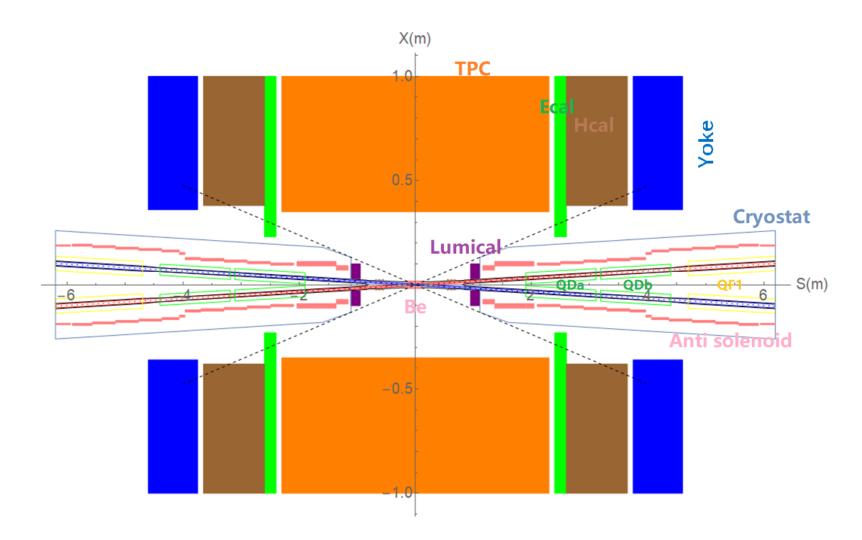
Component	$\Delta x (mm)$	Δy (mm)	$\Delta \theta_{z}$ (mrad)	Field error
Dipole	0.10	0.10	0.1	0.01%
Arc Quadrupole	0.10	0.10	0.1	0.02%
IR Quadrupole	0.10	0.10	0.10	
Sextupole	0.10	0.10	0.1	

- The lattice with small beta functions is very sensitive to FF misalignments.
- Small vertical dispersion and the coupling correction.
- 1000 lattice seeds are generated for further correction.

E = 120GeV

IAS 2021

nstitute of High Energy Physics Chinese Academy of Sciences


CEPC MDI Issues

Sha Bai for CEPC MDI group

IAS Program on High Energy Physics, Hong Kong, Jan 19-21, 2021. 2021-01-21

MDI layout and IR design

国科学院高能物理研究所

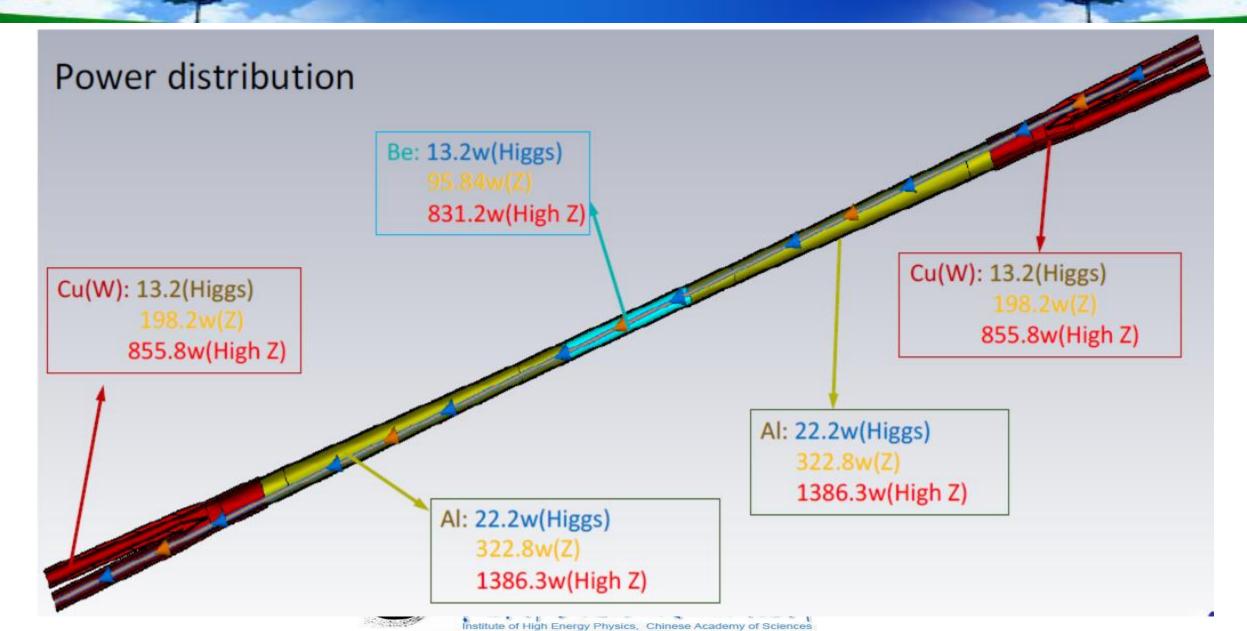
- The Machine Detector Interface (MDI) of CEPC double ring scheme is about ±7m long from the IP.
 The CEPC detector
 - The CEPC detector superconducting solenoid with 3T magnetic field and the length of 7.6m.
 - The accelerator components inside the detector without shielding are within a conical space with an opening angle of cosθ=0.993.
 - The e+e- beams collide at the IP with a horizontal angle of 33mrad and the final focusing length is 1.9m.

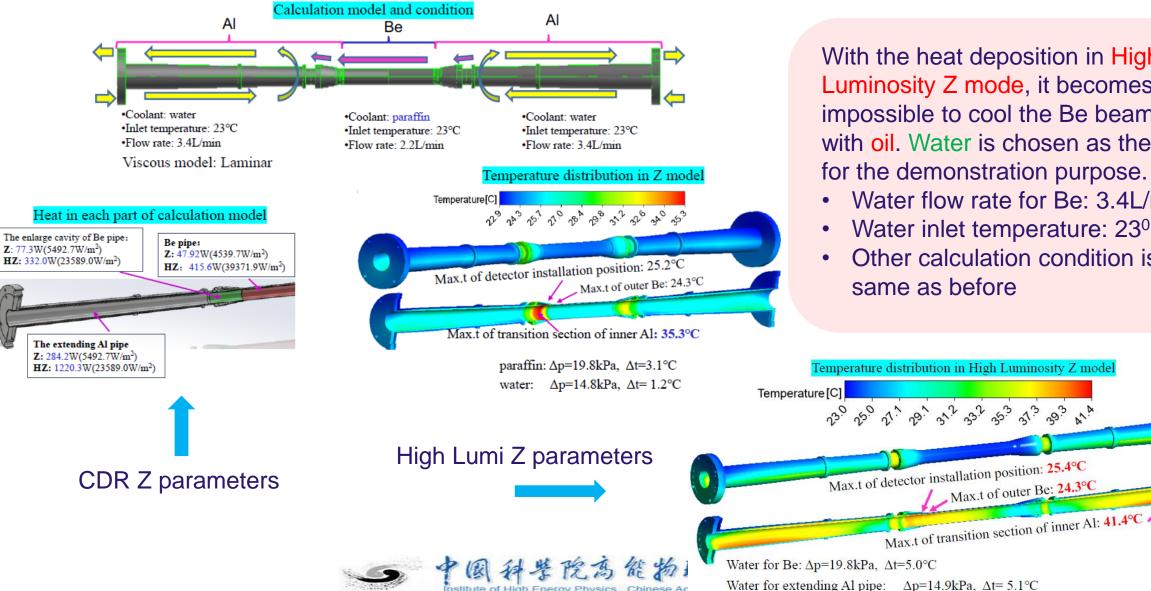
Chances since their CDR

- Now L* is 1.9m, strength of FF quad ~150T/m
- Design is more aggressive than ours!
- B-s-c is ~15mm, but beam pipe (from Jie Gao's talk) is only 17 mm diameter

	range	Peak filed in coil	Central filed gradient	Bending angle	length	Beam stay clear region	Minimal distance between two	Inner diamete r	Outer diamete r	Critical energy (Horizonta l)	Critical energy (Vertical)	SR power (Horizont al)	SR power (Vertica I)
L*	0~1.9m				1.9m		aperture						
L	0.01.911				1.911								
Crossing angle	33mrad												
MDI length	±7m												
Detector requirement of accelerator components in opening angle	8.11°						\frown						
QDa/QDb		3.2/2. 8T	141/84.7 T/m		1.21m	15.2/17.9mm	62.71/105. 28mm	48mm	59mm	724.7/663.1 keV	396.3/26 3keV	212.2/239. 23W	99.9/42. 8W
QF1		3.3T	94.8T/m		1.5m	27.2 11111	155.11MM	56mm	69000	675.2keV	499.4keV	472.9W	135.1W
Lumical	0.95~1.11m				0.16m			57mm	200mm				
Anti-solenoid before QD0		8.2T			1.1m			120mm	390mm				
Anti-solenoid QD0		3T			2.5m			120mm	390mm				
Anti-solenoid QF1		3T			1.5m			120mm	390mm				
Beryllium pipe					±120mm			28mm					
Last B upstream	64.97~153.5m			0.77mrad	88.5m					33.3keV			
First B downstream	44.4~102m			1.17mrad	57.6m					77.9keV			
Beampipe within QDa/QDb					1.21m							1.19/1.31 W	
Beampipe within QF1					1.5m							2.39W	
Beampipe between QD0/QF1				e 1 -	0.3m							26.5W	

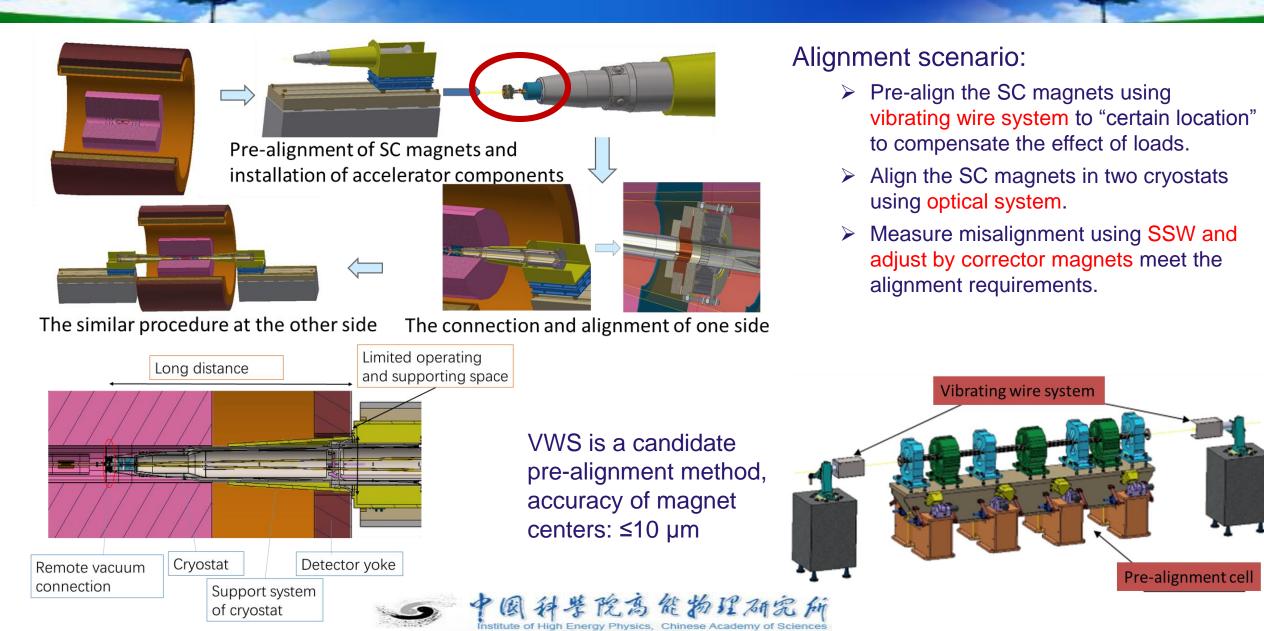
QDa/QDb, QF1 physics design parameters β_v*=1mm, β_x*=0.33m

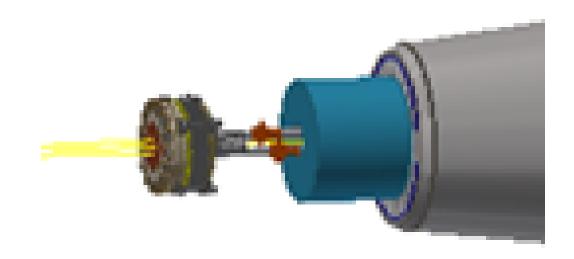

QDa/QDb	Horizontal BSC 2 (18σ _x +3)	Vertical BSC 2(22σ _y +3)	e+e- beam center distance	QF1	Horizontal BSC 2 (18σ _x +3)	Vertical BSC 2(22σ _y +3)	e+e- beam center distance
Entrance	12.41/19.66 mm	12.89/15.22 mm	62.71/105.2 8mm	Entrance	19.66 mm	13.21 mm	155.11 mm
Middle	14.84/23.02 mm	14.61/14.88 mm	82.84/125.4 1mm	Middle	23.02 mm	12.00 mm	179.87 mm
Exit	17.92/24.14 mm	15.21/13.87 mm	102.64/145. 21mm	Exit	24.14 mm	11.60 mm	204.62 mm
Good field region		ntal 12.13/17.92 r cal 15.21/15.22 m	· · · · · · · · · · · · · · · · · · ·	Good field region	Horizontal 24	1.14 mm; Vertical	13.21 mm
Effective length		1.21 m		Effective length		1.5 m	
Distance from IP		1.9/3.)9 m		Distance from IP		4.7 m	
Gradient		141/84.7 T/m		Gradient		94.8 T/m	


Heating load on beam pipe

- Big discussion on SR heating and collision debris heating, but no mention of resistive heating...
- Huge amount of HM heating (4kW around +-2m from the IP)
- Paraffin cooling does not work, use water instead.

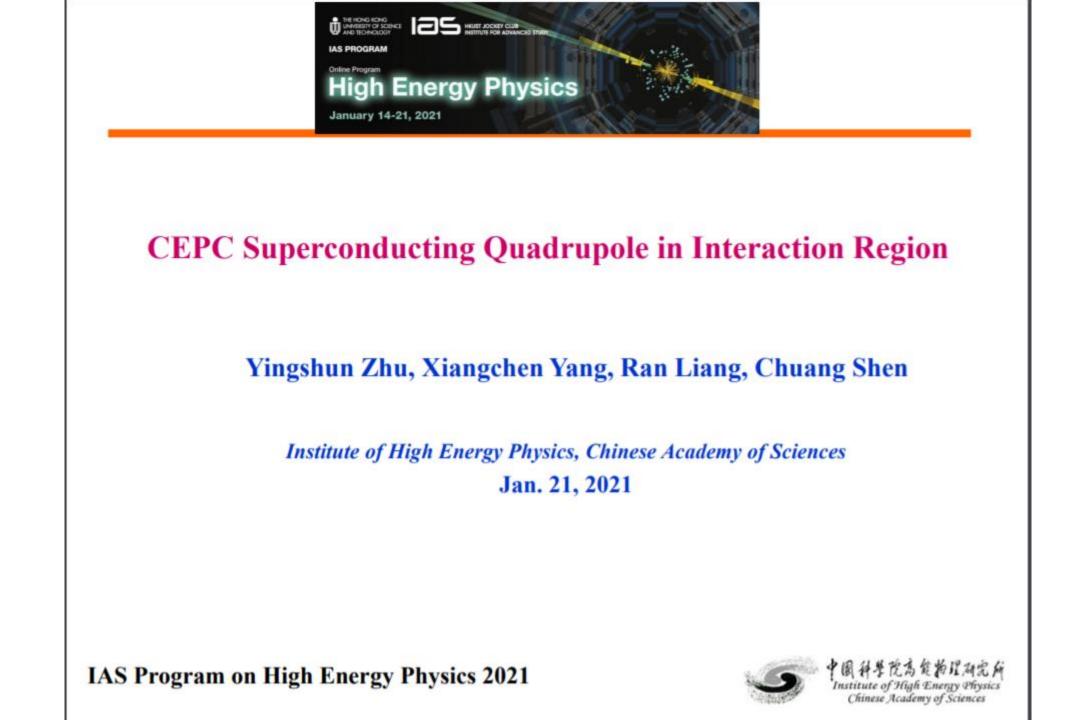
HOM power distribution


Beam pipe thermal analysis


With the heat deposition in High Luminosity Z mode, it becomes impossible to cool the Be beam pipe with oil. Water is chosen as the coolant for the demonstration purpose.

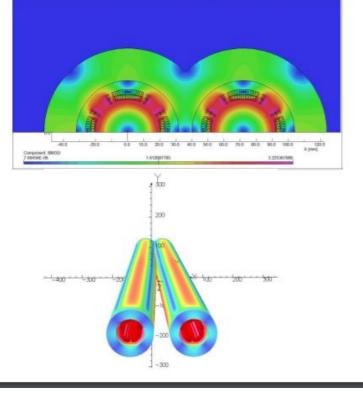
- Water flow rate for Be: 3.4L/min
- Water inlet temperature: 23°C
- Other calculation condition is the same as before

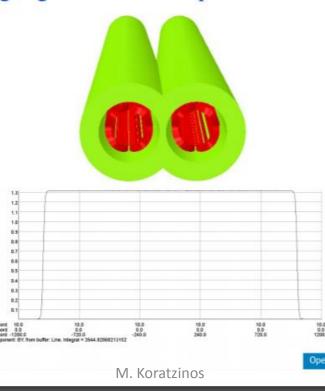
MDI integration and alignment



Still lumical behind flange

Also Lumical not centred on outgoing beam pipe

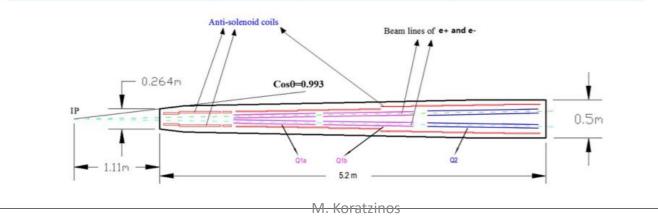

M. Koratzinos



Old design

Option2: QD0 design with iron

- The excitation current is 2080A @4.2K.
- The field harmonics as a result of field crosstalk is smaller than 0.5×10^{-4} . Compared with the iron-free design, the excitation current can be reduced.
- Novel design: Double aperture quadrupole magnet using cos2θ coil with iron yoke shared by two apertures, with crossing angle between two apertures.


New "high luminosity" design

Conceptual design of HTS final focus quadrupole coils in CEPC IR

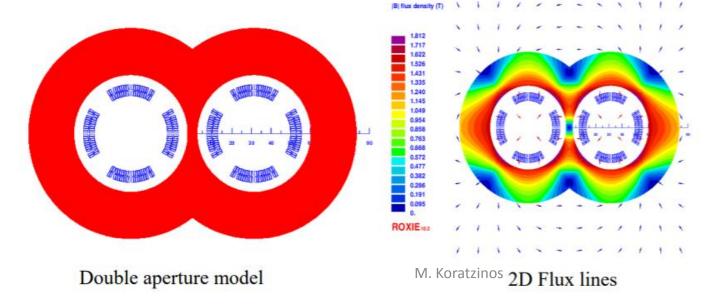
• The requirement of the CEPC double aperture Final Focus quadrupoles is recently updated for high luminosity with L*=1.9m.

Table 3: Updated Requirements of final focus quadrupole magnets for Higgs

Magnet	Central field gradient (T/m)	Magnetic length (m)	Width of GFR (mm)	Minimal distance between two aperture beam lines (mm)
Qla	141	1.21	15.21	62.71
Q1b	84.7	1.21	17.92	105.28
Q2	94.8	1.5	24.14	155.11

Conceptual design of HTS final focus quadrupole coils in CEPC IR

Design considerations


- The field gradient of quadrupoles is stronger compared to that in CDR, and the available bore space for the coil is smaller.
- The development of Q1a is the most challenging.
- Design of quadrupoles and anti-solenoid is similar to that in CDR.
- Corrector coils will be inside the bore of Q1b and Q2 quadrupole coil.
- Iron yoke is used to eliminate the field crosstalk between the two apertures.
- Inside quadrupole, beam pipe diameter is around 17mm or 18 mm.

Miraculously, crosstalk is still at 0.5 units

Cos20 option of Q1a

Field cross talk of the two apertures

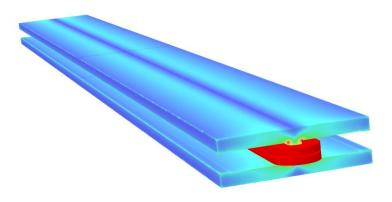
- 2D field cross talk of Q1a two apertures near the IP side, where the distance between two aperture centerlines is minimum.
- Iron yoke width in the middle is very limited; the field harmonics as a result of field crosstalk is smaller than 0.5×10⁻⁴.
- The dipole field in each single aperture as a result of field crosstalk is smaller than 5 Gs. Magnetic field cross talk between two apertures is negligible.

Progress of CEPC Magnet R&D

Wen Kang, Mei Yang

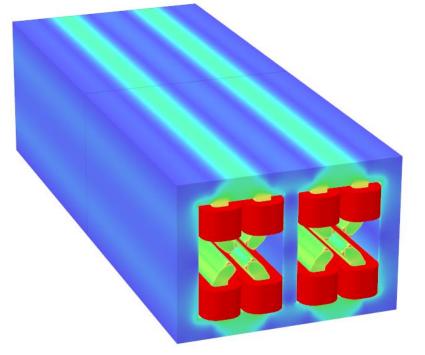

IAS 2021 Beijing, Jan. 21, 2021

Design of long DAD magnet

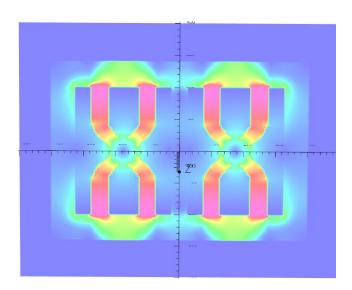

- As the magnetic length is up to 28.7m, the 5.7m pure dipole model will be built to check the field quality, mechanical strength and deformation.
- Basic parameters and design considerations

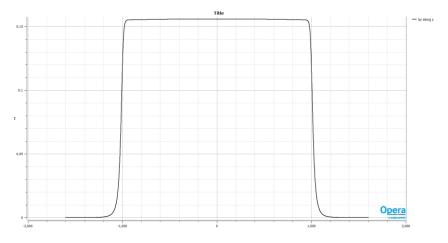
	Item
Center field (Gs)	141.6@45.5GeV,373@120GeV,568@182.5GeV
Gap (mm)	66
Magnetic Length (m)	5.737
Good field region (mm)	±13.5
Field harmonics	<0.05%
Field adjustability	±1.5%
Field difference between two apertures	<0.5%

- Beam center separation is 350mm;
- Solid iron with DT4;
- Two turns of aluminum busbars with cooling hole;
- Anodizing treated insulation coil;
- Silvered contact face to reduce contact resistance.



Cross section of long DAD




A new design of DAQ magnet

- 3D simulation (2m long iron)
 - The iron weight is about 4 ton, the coils' weight is about 270kg.
 - The power consumption 9kW @120GeV.

Bmod@182.5GeV

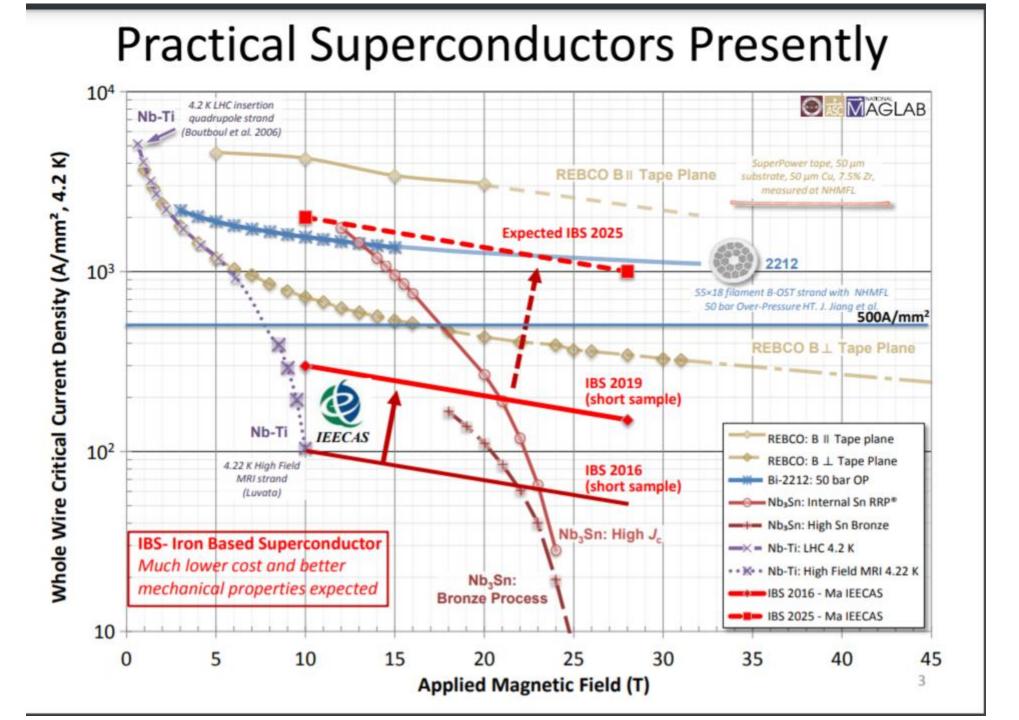
By along z @r=12.2mm in Ap2

Bmod@182.5GeV, @center plane

Arc quad

	Dipole	Quad.	Sext.	Corrector	Total
Dual aperture	2384	2392	-	-	12742
Single aperture	80*2+2	480*2+172	932*2	2904*2	13742
Total length [km]	71.5	5.9	1.0	2.5	80.8
Power [MW]	7.0	20.2	4.6	2.2	34

- CEPC moved to a double aperture design. Power consumption: 9kW@120GeV
- @top energies: 21kW
- Number of quads: 2400
- Total power of quads: 50MW!! (compared to 60MW SR power!!)

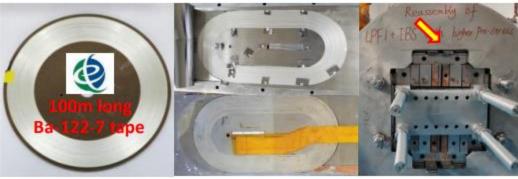


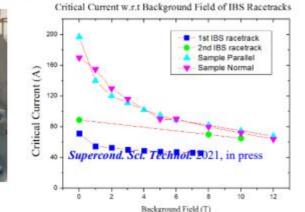
Progress of the High Field Superconducting Magnets for Particle Accelerators

Qingjin XU

Institute of High Energy Physics, Chinese Academy of Sciences

IAS Program on High Energy Physics (HEP 2021), January 2021




Performance of the 1st IBS racetrack coil

Fabrication of racetrack coil with 100m IBS tape and test at 10T

- Two racerack coils with 100m long IBS tapes have been fabricated and tested at 10T background field.
- The Ic in the coil reached 86.7% of the short sample at 10T.

It seems reality is different... we are down from 500A/mm2 to ~50A/mm2

Comments from SUST reviewers :

- a) ...the new results that can have a strong impact on the conductor and magnet community.
- b) ...demonstrated the great potential of Iron-Based Superconductor in the development of next-generation accelerators.