

Designing, Validating and Demonstrating High Reliability for the DI/OT Hardware Kit

RASWG Meeting 25/03/2021

V. Schramm on behalf of and with many inputs from the DI/OT team:G. Daniluk, C. Gentsos, E. Gousiou, L. Patnaik, A. Patsouli, M. Rizzi, J. Serrano

Agenda

- The Distributed I/O Tier Hardware Kit
- DI/OT Dependability Methodology
- Ongoing and Future Efforts

• Summary & Outlook

DI/OT - Front End Hardware Tier

- Newly supported tier
- Extension of CO services
- For rad-exposed applications

G. Daniluk & E. Gousiou, BE-CO TM 04.06.20

The DI/OT Platform

- Modular
- Low-cost
- Standards-compliant
- Reliable
- High-performance
- Open hardware

platform for custom electronics

Non-rad Peripheral Board

ProFIP

DI/OT Platform (2)

Courtesy of G. Daniluk

DI/OT Applications

G. Daniluk & E. Gousiou, <u>BE-CO TM 04.06.20</u>

2) Full Remote Alignment System EN-SMM

3) Quantum Computing Creotech Instr. S.A., PL

4) Fast Interlocks TE-ABT

5) Coupling Loss Induced Quench System (CLIQ) TF-MPF

- How will the DI/OT perform?
- How to ensure high performance for different applications in varying environments?
- How to ensure a successful: Design? Testing? Production? Installation? Operation?

DI/OT in a nutshell

- Operation in various HL-LHC systems, including critical systems
 - Customisable to fulfill a variety of requirements
- <u>Dependable</u> operation required (<u>functionality</u>; low failure rate; high availability; long lifetime; efficient maintenance; good support; user-friendly; ...)

Existing dependability efforts (design specs):

- + PSU redundancy
- + Design according to standards
- + Monitoring capabilities

- + Rad-tol design & irradiation tests
- ± 1 DI/OT several applications

Agenda

- The Distributed I/O Tier Hardware Kit
- DI/OT Dependability Methodology
- Ongoing and Future Efforts

Summary & Outlook

The DI/OT Lifecycle

DI/OT Dependability

Planning phase:

- Specifications
 - Design, Environment, Application, Dependability

Design phase:

- Analysis methods (qualitative/quantitative)
- Design reviews
- System dependability model & prediction
- FEA simulations
- Prototype testing and validation

Production phase:

- Process control and Quality Assurance
- Production Test Suite (PTS)
- Packaging and Transport

Testing phase:

- Early life failure screening
- Reliability demonstration

DI/OT Dependability

3/25/2021

Specifications

Defining specifications – Black Box Approach:

- Design specifications as input
- Definition of I/Os
- Life cycle environments

Dependability specifications (\rightarrow methodology):

- 1) General requirements
- 2) Design & Validation
- 3) Production
- 4) Handling, Packaging & Transport
- 5) Testing after production
- 6) Installation & Operation

User questionnaires

Validation tests definition

DI/OT for PIC - FTA

Top-level end effects (Severity ranks):

A) Magnet damage (missing to switch off PC)B) Magnet damage (missing to trigger magnet energy extraction)

C) Magnet damage (missing to trigger beam dump request)

- 5) False beam dump request
- 4) Maintenance required after LHC fill
- 3) Maintenance required to be scheduled
- 2) False warning generation
- 1) "No effect"
- Assign to functional blocks (Worst-Case approach)

Top-Level DI/OT Analysis

- 1) <u>Top-level</u> failure effects analysis (\leftrightarrow FTA)
 - Definition of 8 generic DI/OT top level failure effects:
 - 8) False/erroneous fieldbus communication
 - 7) False/erroneous peripheral board communication
 - 6) Loss of peripheral board communication
 - 5) Loss of fieldbus communication
 - 4) "Degraded" operation immediate maintenance required
 - 3) "Degraded" operation scheduled maintenance required
 - 2) False warning generation
 - 1) "No effect"
 - Assign failure modes and effects to 14 top-level modules
- 2) Perform FMECA for individual modules bottom-up
 - Module top-level failure effects as input

Designing, Validating and Demonstrating High Reliability for the DI/OT Hardware Kit Ongoing

Bottom-Up Module Analyses

1) System structure & reliability prediction: - Radtol System Board -

Isograph Reliability Workbench

Stress derating of components: stress **Applied Stress** Stress ratio = Rated Stress Capacitors (MLCC): name derating voltage C34 0.793651 6.3 GND P5V0 A C35 0.793651 6.3 GND P5V0_A X5B Vapplied C193 0.75 12 16 GND P12V0 X5R < 0.5C213 0.75 12 16 GND P12V0 X7R V_{rated} C194 0.52381 3.3 6.3 GND P3V3 X5R C116 0.52381 3.3 6.3 GND PPERIPH X5R C20 0.48 12 25 GN C. Gentsos: C57 0.075 1.2 16 GN extract cap derating ICs: [A] IV1 Linear Regulator ICS TP57A4901DGN1 IC5 2.00E-02 63.4 CERN Radtol 10W DCDC PCBM CERN FEASTMP VPCBM1 10.8 Low Dropout Regulator I TROBREOUPRE 102 1.00E+00 0.8 0.8 16 125 S.Lead Plasti Diode D1 1N4148W5 2.00F-03 12 0.024 650 150 SOD-323 Zener Diode D2 2.00E-03 12 0.024 420 150 SOT-23 Transistor T1 BC817-25 1.00E-03 2.5 0.003 500 150 SOT-23-3 Transistor T2 BC817.25 1.00E-03 2.5 0.003 500 13 150 SOT-23-3 Low Dropout Regulator IC3 173083F0#P8F 1.00E+00 0.7 0.7 16 125 S.Lead Plast Linear Regulator IC4 TP57A4901D88 8.2 0.135 47.7 125 V50N Voltage Regulator IC29 1.50E-02 1.7 0.026 50.5 1.3 125 SOT-223 IGLOO2 FPGA M2GL090T-FGG676 IC1 0 14.52 0.0 N-channel MOSEETs with I 6, MGSF1N02LT1G T4.6 T23 1.00E-03 5 0.005 300 1.5 150 SOT-23 SPI Flash memory AT250N512C-SSHF-B 0.0 125 50(0.8) SN74LVC2T45DCTT 1.00E-03 2.5 0.003 184 0.5 150 8-Pin SM8 IC10. N-channel MOSFETs with Diode T3 MGSF1N02LT1G 0 300 0.0 150 SOT-23

Ongoing

 $\frac{T_{junction}}{T_{rated}} \le 0.7$

Radiation Tolerant Power Supply

RaToPUS:

- Radiation tolerant PSU using COTS
 - > AC/DC: 230Vac to 48Vdc
 - > 12V DC/DC: 48Vdc to 12Vdc
 - > 5V DC/DC: 48Vdc to 5Vdc

AC/DC demo board

12V DC/DC demo board

L. Patnaik, 25.06.20 R2E status of RaToPUS

RaToPUS - FMECA example

12V DC/DC stage v1: Auxiliary Power Supply \rightarrow Powering of control circuits

IC1 LM317EMP Vin NOTE: Add extra Cu area for R5, R6, R10, R11 D15A BAV99 3 13.7V 10.7V R5 390 R6 390 1 aux OUT IN Vcc2 4 ΥD1 R8 1% 22k OR10 390 R11 39 M4041 R12 ⁻ R13 BCP53 0.1V or 10.4V 5k 1% 680 7uF 4.6 Vcc >10V GND I **Auxiliary Bias** TP21 3 D13B 11V **R18** 10 4VVout IC4 L78L05ACUTR+5V BAT54C BAT54C when NOTE: Use large Cu heat-spreader IN OUT 16 area for T1 and T2 (atleast 1cm2 each) GND TP5 6 **Bootstrap Bias** 2 Operates only when auxiliary bias is OFF (during start-up, output short circuit, shutdown) Ξ GND I GND I GNI **Presented during: BE-CO Technical**

Meeting, 08.10.20

Designing, Validating and Demonstrating High Reliability for the DI/OT Hardware Kit

3/25/2021

Ongoing design and analysis

Work of L. Patnaik

3/25/2021

RaToPUS - Some v2 Optimisations

- Divert heating from T1 and T2 to the series resistors using more resistors with larger series resistance
- Change R9 from 27 to 39 27 to 39 to employ T1 at lower I_{CC}
- Increased T1, T2 copper areas to improve thermal management
- Efficiency improvements:
 - Single 100kΩ resistor for R14+R133 (10kΩ) to reduce standby power
 - Zener-BJT-based solution for auxiliary bias to reduce voltage reference drift

Work of L. Patnaik

Design Reviews

- Long existing practice within BE-CEM (BE-CO)
 - V1.0 → Review invitation to experts
 - Feedback: Issue creation on OHWR
 - Communication via issues
 - Follow-up meeting after deadline
- e.g. Radtol System Board (C. Gentsos):
 - Feedback within 72 issues:
 - Critical
 - Minor
 - Cosmetics
 - Question

	A OPEN HARDWARE REPOS	ITORY Projects - Groups - Activity Milestone	s Snippets 🖿 🖬 🗸 Se	arch or jump to	
	DIOT Igloo2-based	Projects > 🗑 DIOT Igloo2-based radiation-tolerant System	m Board > Wiki > First schematic review		
	System Board	First schematic review Last edited by Grzegorz Daniluk 4 months ago		Page history	
	Repository	This page contains instructions for reviewers of the	e DI/OT rad-tol system board prototype	e schematics.	
A	D Issues (4)	Reviewers are assumed to be familiar with the DI/C at least a quick parse of the % specification docum)T project, and it is recommended that nent.	they have done	
)	Merge Requests	The files for review are available at the bottom of t question/remark, please use the Issues page to ch	his page. When you discover an issue, eck that it has not been already reported	or have a d (don't forget to	
	🖸 Wiki	also check the closed issues) and, if not, to submit the issue, discuss it, etc. When submitting a new issue, please add a label it	a new issue. From there, you can track	importance labels	
	്ക് Snippets	in decreasing order of priority are:	ect the performance of the board or ma	ike it non-	
	D Discourse	functional) minor (for any non-critical issue) minor (for commondations to improve	the look and readability of the schema	stice)	
HARDWARE REPOS	ITORY Projects - Groups - Activity Milestones Snipp	ets	a n n c AB -	iucs)	
Igloo2-based	Projects > 🗑 DIOT Igloo2-based radiation-tolerant System Board >	Issues	PW.		
em Board	Open 4 Closed 68 All 72		New issue		
bry	Search or filter results		Created date \checkmark		
4	IC6: missing input voltage #72 · opened 3 days ago by Grzegorz Daniluk Ø layout	v1.0 (critical)	🔘 🗫 0 updated 3 days ago		
	JTAG pull-ups and pull-downs #71 · opened 1 month ago by Christos Gentsos @ layou	ut v1.0 (cmical)	🜞 🕏 0 updated 1 month ago		
nes	Different packages used for IC4 and IC5 (both TPS7A49 #70 - opened 1 month ago by Christos Gentsos @ layou	001) ut v1.0 minor	CLOSED 🧿 电 1 updated 1 month ago		
lequests ()	Wrong pull ups at voltage translators (IC7) #69 - opened 3 months ago by Volker Schramm @ layor	ut v1.0 🛗 Dec 18, 2020 (cmical)	CLOSED 🧿 🗣 2 updated 1 month ago		
	FMC: add a note saying which LA_D are connected to F #68 · opened 4 months ago by Grzegorz Daniluk ② sch	PGA differential-capable bank, it's not all of them v1.0 cosmetics	CLOSED 👩 오 1 updated 4 months ago		
	Constrain_Periph_Nets: length matching for LVDS_17 qu #67 · opened 4 months ago by Grzegorz Daniluk @ sch	vite loose v1.0 (menor	CLOSED 🚺 🗪 2 updated 4 months ago		
		at a need of the state of the state of the	1. TS		

See also: E. van der Bij et al., https://ohwr.org/project/ed/wikis/Schematics-design-reviews

Designing, Validating and Demonstrating High Reliability for the DI/OT Hardware Kit

OPEN

Reposit
 Issues

List Board Labels

Milesto

& CI/CD

M Wiki

X Snippet

D Discour

« Collanse side

shall be av

#66 · oper

DIO attar radi

Simulation

- 1) Thermal simulations using Ansys Icepak
 - PCB assembly level
 - Full DI/OT crate

Optimisation + Reliability prediction input

- 2) Life cycle reliability simulation using Ansys Sherlock
 - Temperature Cycles (Stress Screening)
 - Mechanical Shock
 - Vibration

Designing, Validating and Demonstrating High Reliability for the DI/OT Hardware Kit **Ongoing & TBD**

Production Phase - 1 slide

Quality Assurance:

- Applicable standards
 - ISO 9000 family
 - Acceptance criteria: IPC & JEDEC framework
- Process Control
 - Process FMEA
 - Inspections & tests
- <u>Handling</u> & <u>transport</u>

Designing, Validating and Demonstrating High Reliability for the DI/OT Hardware Kit ~> 2022

BackUp - CERN Resources for Production

https://ohwr.org/project/ed/wikis: Erik van der Bij et al.

- Template <u>"Technical Specification for assembled PCB products"</u>; other <u>IPT templates</u>
 - Applicable standards
 - Functional Test(s): Production Test Suite (PTS)
 - Traceability
 - Packaging, Storage, Transport, Documentation,
- Best Practices for Quality
- Quality Control and Assurance

3.9.3 International Standards

For the manufacturing of PCBs:

 IPC Standards IPC-4552, IPC-4101/94, IPC-4562/3 CU-E3 class 2, IPC-TM-650, IPC-DR-572, IPC-4761, IPC SM 840 class H, J-STD-609, IPC-2221 and IPC-2222 type 3 class2, IPC-A-600 class 3, IPC-6011 and IPC-6012 class 3, IPC-TM-650.

For the assembly of PCBs:

- IPC Standard IPC-A-610 (Class 2);
- IPC Standard IPC/EIA J-STD-001 (Class 2);
 - Cleanliness Designator C-22 (both sides of assembly to be cleaned; test for ionic residues required on 10% of the boards produced).

In case of conflict, IPC-A-610 takes precedence over IPC/EIA-J-STD-001.

Design Review (checklists):

- <u>OHWR</u> (E. van der Bij et al.)
- EDMS (B. Todd et al.)

Testing Phase

Testing Phase:

۲

Validation & Failure Mechanisms

- Validate all modules' and system functionalities at top performance
- Validate potential operational and life cycle environments

User survey	
(operation)	

T _{a,max}	40°C
T _{a,min}	10°C
RH _{max}	80%
Dose _{max}	500 Gy; 25 Gy/a
P _{diss,max} (only periph.b.)	50 W
Max. power cycles	360/a (tbc)
Max. mating cycles	<5/a
Mech. stress	No
Magn. fields/EMI	No

- Constant T; RH
- Cycling T; RH
- TBD: Power cycles
- TBD: Combined T + RH + PC
- Mechanical Shock/Vibration → Only Ansys Sherlock simulation (tbd)
- Radiation \rightarrow RHA

Testing Phase:

Validation & Failure Mechanisms

- Trigger potential design weaknesses & (wear out) failure mechanisms
- Determine design robustness
- Feedback/validate production process

- Increasing <u>temperature</u> in steps until failure (destructive)
- Distinction between:
 - Functional errors (tolerance/robustness) &
 - Hardware failures (wear out)

Validation & Failure Mechanisms

Required DI/OT lifetime: 20 years

PSU lifetime benchmark: << 20 years

EoL Test - 2 Approaches

Designing, Validating and Demonstrating High Reliability for the DI/OT Hardware Kit TBD !

EoL Test - Alternative

1) EoL determination

- + Precise EoL time for efficient preventive maintenance
- + Low operational risk (wear out)

2) No EoL test, only high stress test

- + Existing PSU redundancy !
- + EoL failure mechanisms <u>can</u> be identified by high stress test (focus on critical components)
- + MoniMod may be able to diagnose parameter degradation in operation (*V*, *I*); even before first failure
- Higher operational risk
- EoL determination based on operational failures
- Degradation on field level unknown
- 100% failure monitoring and analysis during operation necessary !

TBD !

Testing Phase:

Screening & Reliability

Series production Environmental Stress Screening Reliability Demonstration Test

Goals:

- Trigger potential latent defects and surpass early failure period
- Elevated stress to reduce testing time

Definition & Execution:

- Stress = temperature cycles
 - Very efficient stress
 - Good experience with VFC-HD (22h; 5...50°C; 90% RH-peak)
- Inputs:
 - Acceleration models / Screening strength
 - Previous high stress tests data
 - Component datasheets: T_{max}, T_{min}

Testing Phase:

Goals:

Screening & Reliability

		~> 2022
User surv	ey:	
Min. MTTF	36/92/106/176/ 877	' kh
T _{a,max}	40°C [NanoFIP 50	°C]

- Demonstrating an upper failure rate for λ =const. (2nd bathtub region)
 - Wear out modules → Preventive maintenance !
- Additional confidence of surpassing the early failure period

Achievable MTTF:

Series production

Environmental Stress Screening

Reliability Demonstration Test

CL=90%; T _{nominal} =25°C	MTTF	MTTF(Arrhenius,	e.g.	MTTF 200x 22h ESS*:		1.9kh
0-failure [1-failure]	[kh]	E _a =0.3eV) [kh]				
Test temperature	25°C	40°C		MTTF 200x 4 weeks Run In:	+	58.1kh
200 DI/OT; 2 weeks	29 [17]	50 [30]				••••
200 DI/OT; 4 weeks	58 [34.5]	101 [60]		MTTF 4 weeks commissioning:	+	(58.1kh)
200 DI/OT; 6 weeks	87 [51.5]	152 [90]			<u> </u>	

60kh (118kh)

*failure mechanisms successfully triggered and/or remedied

= Maximum 1 failure every 6.8 (13.5) years

Operation Phase

- Performance monitoring using InforEAM:
 - Operational validation (extended Run In)
 - Failure mechanism identification and analysis
 - → Weibull Analysis (not only RaToPUS)
- Maintenance strategy & spare management

3/25/2021

Parameters to be tracked:

- ID, production batch, ...
- PTS result(s)
- Inspection steps
- Screening + Run In results
- Location/Time of installation(s)
- Maintenance interventions
- Repairs
- Operational parameters

Summary

- Methodological approach to assure dependability throughout the entire life cycle
 - Adressing the entire life cycle already during the ongoing design phase:

Reliability Engineering and its Adoption for the DI/OT

Outlook

Reliability Engineering and its Adoption for the DI/OT

Thank you for your attention !

Questions?