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Tracking Challenge in CBM (FAIR/GSI, Germany)

• Fixed-target heavy-ion experiment
• 107 Au+Au collisions/s
• 1000 charged particles/collision
• Non-homogeneous magnetic field
• Double-sided strip detectors 
(85% combinatorial space points)

Track reconstruction in STS/MVD and displaced vertex 
search 
are required in the first trigger level.

Reconstruction packages:
• track finding Cellular Automaton (CA)
• track fitting Kalman Filter (KF)
• vertexing KF Particle
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Cellular Automaton (CA) as Track FinderCellular Automaton (CA) as Track Finder

Track finding: Wich hits in detector belong to the same track? – Cellular Automaton (CA)
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Cellular Automaton:
• local w.r.t. data
• intrinsically parallel
• extremely simple
• very fast

Perfect for many-core CPU/GPU !

Detector layers

Hits

4. Tracks (CBM)

0. Hits (CBM)

1000 Hits

1000 Tracks

Cellular Automaton:
1.Build short track segments.
2.Connect according to the track model,

estimate a possible position on a track.
3.Tree structures appear,

collect segments into track candidates.
4.Select the best track candidates.
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Kalman Filter (KF) based Track FitKalman Filter (KF) based Track Fit
Track fit: Estimation of the track parameters at one or more hits along the track – Kalman-Filter (KF)
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r = { x, y, z, px, py, pz } 

Position, direction and momentumState vector

Nowadays the Kalman-Filter is used 
in almost all HEP experiments

Kalman Filter: 
1.Start with an arbitrary initialization.
2.Add one hit after another. 
3.Improve the state vector. 
4.Get the optimal parameters after the last hit.

KF as a recursive least squares method

KF Block-diagram 11

22 33
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CPU

Thread Thread

20002000

Many-Core HPC: Cores, Threads and SIMDCores, Threads and SIMD

Cores and Threads realize the task level of parallelism
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Process

Thread1 Thread2
… …
exe r/w
r/w exe
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...          ...

Vectors (SIMD) = data level of parallelism

Core

Scalar Vector
D S S S S

SIMD = Single Instruction, Multiple Data

Fundamental redesign
of traditional approaches to data processing

is necessary

HEP: cope with high data rates !

Cores

Threads

SIMD WidthPerformance



06 July 2010, CERN06 July 2010, CERN Ivan Kisel, GSIIvan Kisel, GSI 6/206/20

Our Experience with ManyOur Experience with Many--Core CPU/GPU ArchitecturesCore CPU/GPU Architectures

63% of the maximal GPU utilization (ALICE)

2x4 coresSince 2005 Since 2008 512 cores

1+8 coresSince 2006Since 2008 32 cores

70% of the maximal Cell performance (CBM)Cooperation with Intel (ALICE/CBM)

Intel/AMD CPU NVIDIA GPU

Intel MICA IBM Cell

6.5 ms/event (CBM)

Future systems are heterogeneous
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CPU/GPU Programming Frameworks

Vector classes: Cooperation with the Intel Ct group

• Intel Ct (C for throughput) 
• Extension to the C language
• Intel CPU/GPU specific
• SIMD exploitation for automatic parallelism

• NVIDIA CUDA (Compute Unified Device Architecture)
• Defines hardware platform
• Generic programming
• Extension to the C language
• Explicit memory management
• Programming on thread level 

• OpenCL (Open Computing Language)
• Open standard for generic programming
• Extension to the C language
• Supposed to work on any hardware
• Usage of specific hardware capabilities by extensions

• Vector classes (Vc)
• Overload of C operators with SIMD/SIMT instructions
• Uniform approach to all CPU/GPU families
• Uni-Frankfurt/FIAS/GSI
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Vector classes:
provide full functionality for all platforms
support the conditional operators

phi(phi<0)+=360;

c = a+b         vc = _mm_add_ps(va,vb)

Scalar SIMD

Vector classes enable easy vectorization of complex algorithms 

Vc increase the speed by the factor: 
SSE2 – SSE4                4x
future CPUs 8x
MICA/Larrabee           16x
NVIDIA Fermi      research

Vector classes overload scalar C operators with SIMD/SIMT extensions
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Kalman Filter for Track Fitting

Parameterization 
of the magnetic field

December 21, 1968. The Apollo 8 spacecraft has just been sent on its way to the Moon.
003:46:31 Collins: Roger. At your convenience, would you please go P00 and Accept? We're going to update to your W-matrix.

Optimization 
of the algorithm
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KF was considerably reworked
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Kalman Filter Track Fit on Cell

Motivated by, but not restricted to Cell !

blade11bc4 @IBM, Böblingen: 2 Cell Broadband Engines with 256 kB Local Store at 2.4 GHz
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10000x faster
on each CPU

Comp. Phys. Comm. 178 (2008) 374-383

The KF speed was increased
by 5 orders of magnitude
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Performance of the KF Track Fit on CPU/GPU Systems

scalar double single -> 2 4 8 16 32
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Scalability on different CPU architectures – speed-up 100

Data Stream Parallelism
(10x)
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2xCell SPE  (16 )
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Clovertown (  4 )
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Real-time performance on different Intel CPU platforms Real-time performance on NVIDIA GPU graphic cards

Scalabilty

CPU GPU

The Kalman Filter Algorithm performs at ns level
CBM Progr. Rep. 2008
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CBM Cellular Automaton Track Finder

• Fixed-target heavy-ion experiment
• 107 Au+Au collisions/s
• 1000 charged particles/collision
• Non-homogeneous magnetic field
• Double-sided strip detectors 
(85% combinatorial space points)

• Full on-line event reconstruction

770 TracksTop view Front view

Efficiency Scalability

Problem

Highly efficient reconstruction of 150 central collisions per second

Intel X5550, 2x4 cores at 2.67 GHz 
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Parallelization is now a Standard in the CBM Reconstruction

Algorithm Vector SIMD Multi-Threading NVIDIA CUDA OpenCL Time/PC

STS Detector + + + + 6.5 ms

Muon Detector + + 1.5 ms

TRD Detector + + 1.5 ms

RICH Detector + + 3.0 ms

Vertexing + 10 μs

Open Charm Analysis + 10 μs

User Reco/Digi

User Analysis

+ 2009
+ 2010

Future

Future

Intel X5550, 2x4 cores at 2.67 GHz 

The CBM reconstruction is at ms level
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International Tracking Workshop

45 participants from Austria, China, Germany, India, Italy, Norway, Russia, Switzerland, UK and USA



Workshop Program Workshop Program 
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Software Evolution: ManySoftware Evolution: Many--Core Barrier Core Barrier 
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t1990 2000 2010

t1990 2000 2010

Many-core HPC eraScalar single-core OOP

Consolidate efforts of: 
• Physicists
• Mathematicians
• Computer scientists
• Developers of parallel languages
• Many-core CPU/GPU producers

Software redesign can be synchronized between the experiments



06 July 2010, CERN06 July 2010, CERN Ivan Kisel, GSIIvan Kisel, GSI 17/2017/20

// Track Reconstruction in CBM and ALICE// Track Reconstruction in CBM and ALICE

Different experiments have similar reconstruction problems

CBM (FAIR/GSI) ALICE (CERN)

Track reconstruction is the most time consuming part of the event reconstruction, therefore many-core CPU/GPU platforms.

Track finding is based in both cases on the Cellular Automaton method, 
track fitting – on the Kalman Filter method.

NVIDIA GPU 240 cores (ALICE HLT Group)Intel CPU 8 cores (CBM Reco Group)

107 collisions/s

Collider Fixed-Target Forward geometry Cylindrical geometry

104 collisions/s



Stages of Event Reconstruction: ToStages of Event Reconstruction: To--Do List Do List 
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Track findingTrack finding

Track fittingTrack fitting

Vertex finding/fittingVertex finding/fitting

Ring finding (PID)Ring finding (PID)

Time
consuming!!!

Kalman Filter

Kalman Filter

Combinatorics

Detector/geometry independent

RICH specific

Track model dependent

Detector dependent

• Generalized track finder(s)
• Geometry representation
• Interfaces
• Infrastructure

• Kalman Filter
• Kalman Smoother
• Deterministic Annealing Filter
• Gaussian Sum Filter
• Field representation

• 3D Mathematics
• Adaptive filters
• Functionality
• Physics analysis

• Ring finders
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Consolidate Efforts: Common Reconstruction Package

ALICE (CERN)ALICE (CERN)CBM (FAIR/GSI)CBM (FAIR/GSI)

STAR (BNL)STAR (BNL)PANDA (FAIR/GSI)PANDA (FAIR/GSI)

Host Experiments:

Uni-Frankfurt/FIAS:
Vector classes
GPU implementation

GSI:
Algorithms development
Many-core optimization

HEPHY (Vienna)/Uni-Gjovik:
Kalman Filter track fit
Kalman Filter vertex fit

OpenLab (CERN):
Many-core optimization
Benchmarking

Intel:
Ct implementation
Many-core optimization
Benchmarking

Common
Reconstruction

Package
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Follow-up Workshop

Follow-up Workshop: November 2010 – February 2011   at    GSI or CERN or BNL ?


