# Fast Parallel Event Reconstruction

# Ivan Kisel GSI, Darmstadt

CERN, 06 July 2010

Spineter St

# Tracking Challenge in CBM (FAIR/GSI, Germany)



- Fixed-target heavy-ion experiment
- 10<sup>7</sup> Au+Au collisions/s
- 1000 charged particles/collision
- Non-homogeneous magnetic field
- Double-sided strip detectors (85% combinatorial space points)

Track reconstruction in STS/MVD and displaced vertex search

are required in the first trigger level.

### Reconstruction packages:

- track finding Cellular Automaton (CA)
- track fitting
- Kalman Filter (KF) KF Particle



vertexing

# Cellular Automaton (CA) as Track Finder

Track finding: Wich hits in detector belong to the same track? – Cellular Automaton (CA)



06 July 2010, CERN

Ivan Kisel<u>, GSI</u>

### Kalman Filter (KF) based Track Fit

Track fit: Estimation of the track parameters at one or more hits along the track – Kalman-Filter (KF)





06 July 2010, CERN

### Our Experience with Many-Core CPU/GPU Architectures



# **CPU/GPU Programming Frameworks**



- Intel Ct (C for throughput)
  - Extension to the C language
  - Intel CPU/GPU specific
  - SIMD exploitation for automatic parallelism
- NVIDIA CUDA (Compute Unified Device Architecture)
  - Defines hardware platform
  - Generic programming
  - Extension to the C language
  - Explicit memory management
  - Programming on thread level
- OpenCL (Open Computing Language)
  - Open standard for generic programming
  - Extension to the C language
  - Supposed to work on any hardware
  - Usage of specific hardware capabilities by extensions

#### • Vector classes (Vc)

- Overload of C operators with SIMD/SIMT instructions
- Uniform approach to all CPU/GPU families
- Uni-Frankfurt/FIAS/GSI

Vector classes: Cooperation with the Intel Ct group



### Vector classes:

- provide full functionality for all platforms
- support the conditional operators

phi(phi<0) + = 360;

### Vc increase the speed by the factor:

- ✓ SSE2 SSE4 4x
- ✓ future CPUs 8x
- ✓ MICA/Larrabee 16x
- NVIDIA Fermi research

Vector classes enable easy vectorization of complex algorithms

### Kalman Filter for Track Fitting





|        | Stage | Description                         | $\operatorname{Time}/\operatorname{track}$ | Speedup |               |
|--------|-------|-------------------------------------|--------------------------------------------|---------|---------------|
| P4     |       | Initial scalar version              | 12  ms                                     | _       |               |
|        | 1     | Approximation of the magnetic field | $240~\mu{\rm s}$                           | 50      | 40000 6 1     |
| ۲ It   | 2     | Optimization of the algorithm       | $7.2~\mu{ m s}$                            | 35      | 10000x faster |
| - L    | 3     | Vectorization                       | $1.6~\mu{ m s}$                            | 4.5 J   |               |
| } Cell | 4     | Porting to SPE                      | $1.1~\mu { m s}$                           | 1.5     |               |
|        | 5     | Parallelization on 16 SPEs          | $0.1~\mu{ m s}$                            | 10      |               |
|        |       | Final simulized version             | $0.1~\mu{ m s}$                            | 120000  |               |

Comp. Phys. Comm. 178 (2008) 374-383



The KF speed was increased by 5 orders of magnitude



blade11bc4 @IBM, Böblingen: 2 Cell Broadband Engines with 256 kB Local Store at 2.4 GHz

Motivated by, but not restricted to Cell !

# Performance of the KF Track Fit on CPU/GPU Systems



| Туре    | Cores | Clock, GHz | Time/track, ns |
|---------|-------|------------|----------------|
| Core 2  | 2     | 2.66       | 260            |
| Core i7 | 8     | 2.67       | 52             |

| GFU          |            |                                   |  |  |
|--------------|------------|-----------------------------------|--|--|
| NVIDIA Unit  | Clock, GHz | Throughput, 10 <sup>6</sup> tr./s |  |  |
| 8800 GTS 512 | 1.6        | 13.0                              |  |  |
| GTX 280      | 1.3        | 21.7                              |  |  |

Real-time performance on different Intel CPU platforms

Real-time performance on NVIDIA GPU graphic cards

The Kalman Filter Algorithm performs at ns level

CBM Progr. Rep. 2008

# **CBM Cellular Automaton Track Finder**



| Algorithm           | Vector SIMD | Multi-Threading | NVIDIA CUDA | OpenCL | Time/PC |
|---------------------|-------------|-----------------|-------------|--------|---------|
| STS Detector        | +           | +               | +           | +      | 6.5 ms  |
| Muon Detector       | +           | +               |             |        | 1.5 ms  |
| TRD Detector        | +           | +               |             |        | 1.5 ms  |
| RICH Detector       | +           | +               |             |        | 3.0 ms  |
| Vertexing           | +           | F               | uture       |        | 10 µs   |
| Open Charm Analysis | +           |                 |             |        | 10 µs   |
| User Reco/Digi      |             | Futur           |             |        |         |
| User Analysis       |             | e               |             |        |         |

+ 2009 + 2010

The CBM reconstruction is at ms level

Intel X5550, 2x4 cores at 2.67 GHz

### International Tracking Workshop

# Workshop for Future Challenges in Tracking and Trigger Concepts

### June 7-11, 2010, GSI, Darmstadt, Germany

Topics:

Fixed-Target Experiments (CBM, HADES, PANDA)

> Collider Experiments (ALICE, STAR)

Reconstruction Methods (Finding/Fitting)

Computer Architectures (CPU/GPU)

Software Architectures (Framework/Standalone)

> Training: Vector Classes/SIMD Multi-Threading Intel's Ct CUDA/OpenCL



FAIR

45 participants from Austria, China, Germany, India, Italy, Norway, Russia, Switzerland, UK and USA

# Workshop Program

| Wednesday 09.06                                                                                                                                                                                                                                                                                 | Thursday 10.06                                                                                                                                                                                                                                                                                                                       | Friday 11.06                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09:00-13:00<br>Fixed-Target Experiments<br>09:00 P. Senger CBM Experiment<br>09:10 C. Höhne CBM Physics<br>09:30 V. Friese CBM Software<br>09:50 I. Kisel CBM Reconstruction<br>10:10 J. Markert HADES Tracking<br>10:30 R. Karabowicz PANDA Tracking<br>11:00 Coffee break<br>11:30 Discussion | 09:00-13:00<br>Software Architectures<br>09:00 V. Friese CBM Framework<br>09:20 A. Lebedev CBM MUCH Tracking<br>09:40 S. Lebedev CBM Ring Finder<br>10:00 J. Lauret STAR Framework<br>10:30 S. Gorbunov CA HLT Tracking<br>11:00 Coffee break<br>11:30 I. Kulakov Porting CA to STAR<br>11:50 M. Zyzak CA Merger<br>12:10 Discussion | 09:00-13:00<br>Reconstruction Methods<br>09:00 D. Rohr ALICE GPU Tracking<br>09:20 I. Kisel Track Finding<br>10:00 R.Frühwirth Adaptive Methods<br>10:45 I. Kulakov SIMD KF Track Fit<br>11:00 Coffee break<br>11:30 M. Bach GPU KF Track Fit<br>11:45 M. Zyzak KFParticle<br>12:00 Discussion |
| 14:00-18:00<br>Collider Experiments<br>14:00 V. Lindenstruth ALICE Experiment<br>14:10 J. Thäder ALICE HLT<br>14:50 J. Lauret STAR Experiment<br>15:10 Y. Fisyak STAR Tracking<br>15:30 H. Qiu STAR HLT<br>16:00 Coffee break<br>16:30 Discussion                                               | 14:00-18:00<br>Computer Architectures<br>14:00 S. Jarp Future CPU/GPU<br>14:30 KD. Örtel Intel CPU<br>15:00 H. Pabst Intel Ct<br>15:30 M. Al-Turany GPU Tracking<br>16:00 Coffee break<br>16:30 M. Kretz Vc Classes<br>16:50 I. Kulakov CBM CA Track Finder<br>17:10 Discussion<br>18:30 Dinner                                      | 14:0 0-18:00<br>General Discussion, Future Plans<br>14:00 Discussion<br>16:00 Coffee break<br>16:30 Discussion<br>17:00 I. Kisel Summary                                                                                                                                                       |

# Software Evolution: Many-Core Barrier

# **Scalar single-core OOP**

# Many-core HPC era



2000

#### Consolidate efforts of:

- Physicists
- Mathematicians
- Computer scientists
- Developers of parallel languages
- Many-core CPU/GPU producers

### Software redesign can be synchronized between the experiments

2010

1990

Vordere TPC

# // Track Reconstruction in CBM and ALICE



Track reconstruction is the most time consuming part of the event reconstruction, therefore many-core CPU/GPU platforms.

Track finding is based in both cases on the Cellular Automaton method, track fitting – on the Kalman Filter method.

# Stages of Event Reconstruction: To-Do List



# **Consolidate Efforts: Common Reconstruction Package**



Ivan Kisel, <u>GSI</u>

### Follow-up Workshop

# Workshop for Future Challenges in Tracking and Trigger Concepts

Follow-up Workshop: November 2010 – February 2011 at GSI or CERN or BNL ?

#### Topics:

Fixed-Target Experiments (CBM, HADES, PANDA)

> Collider Experiments (ALICE, STAR)

Reconstruction Methods (Finding/Fitting)

Computer Architectures (CPU/GPU)

Software Architectures (Framework/Standalone)

> Training: Vector Classes/SIMD Multi-Threading Intel's Ct CUDA/OpenCL

