ALICE status report

Evgeny Kryshen (Petersburg Nuclear Physics Institute) for the ALICE collaboration

145th LHCC Open Session 3 March 2021

Outline

- Physics
 - 8 new publications
- LS2 activities
 - Detectors
 - Data processing
 - Updated schedule
- Future upgrades
 - FoCal
 - ITS3

New papers and results since last LHCC

- <u>arXiv:2101.04577</u> Coherent J/ ψ and ψ' photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at 5.02 TeV
- <u>arXiv:2101.04623</u> First measurement of the |t|-dependence of coherent J/ ψ photonuclear production
- <u>arXiv:2101.02581</u> First measurement of coherent ρ⁰ photoproduction in ultra-peripheral Xe-Xe collisions at 5.44 TeV
- <u>arXiv:2101.03110</u> Long and short-range correlations and their eventscale dependence in high-multiplicity pp collisions at 13 TeV
- <u>arXiv:2101.02579</u> Event-by-event multi-harmonic correlations of different flow amplitudes in Pb-Pb collisions at 2.76 TeV
- <u>arXiv:2102.12180</u> Measurements of mixed harmonic cumulants in Pb-Pb collisions at 5.02 TeV
- <u>arXiv:2101.03100</u> Production of pions, kaons, (anti-)protons and φ mesons in Xe-Xe collisions at 5.44 TeV
- <u>arXiv:2102.13601</u> Measurement of beauty and charm production in pp collisions at 5.02 TeV via non-prompt and prompt D mesons
- <u>ALICE-PUBLIC-2021-001</u> Public Note on the Pb-Pb lumi measurement
- Several preliminary results released in January for the IS2021 conference

Ultra-peripheral collisions

Flow

Particle production

Ultra-peripheral collisions

using photon-induced collisions to probe nuclear gluon density

Coherent J/ ψ photoproduction in Pb-Pb UPC

0.012

Excess of low- $p_T J/\psi$ production in hadronic Pb-Pb

- An excess of J/ ψ measured at $p_T < 0.3$ GeV/*c* in peripheral hadronic collisions up to 30-50% centrality
- Interpreted as coherent photoproduction accompanied by hadronic interactions.
 But why coherence is preserved? Which photon source? which gluon source?
- Models based on effective photon flux from spectators qualitatively describe the data in peripheral events but overpredict the data in more central events

Coherent p⁰ photoproduction in Xe-Xe UPC

ρ⁰ photoproduction allows for the study of shadowing mechanisms in the soft regime:

• approximately linear A dependence

Ν

 models based on inelastic Gribov-Glauber shadowing (GKZ, CCKT) reproduce the measured cross sections

Flow and correlation measurements

Fourier decomposition of azimuthal distributions:

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(p_T) \cos\left(n(\phi - \Psi_n)\right)$$

Two-particle correlation measurements

$$\frac{\mathrm{dN}^{\mathrm{pairs}}}{\mathrm{d}\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2V_{n\Delta}(p_T^t, p_T^a) \cos\left(n\Delta\phi\right)$$

$$\uparrow v_n(p_T^t)v_n(p_T^a)$$

Ridge yield vs leading particle/jet p_T in pp

- Study flow-like correlation in high multiplicity pp events
- Near-side ridge yield exhibits a slight increase with increasing leading particle/jet p_T
- Reproduced in PYTHIA 8 with string shoving mechanism, not by EPOS with hydrodynamic core

Correlations between flow amplitudes in Pb-Pb

- Symmetric cumulants (SC) and mixed harmonic cumulants (MHC) insensitive to non-flow
- Normalised SC and MHC have different sensitivity to initial and final state effects

Identified particle spectra in Xe-Xe

Particle production in pp collisions

Zero-degree energy to study pp and MPIs role

1.6

- Forward energy decreases with increasing particle multiplicity at midrapidity, described in generators with MPIs
- Small ZN \rightarrow "central" pp, enhanced MPI, see Drescher, Strikman PRL 100 (2008) 152002

 $ZN / \langle ZN \rangle (|\eta| > 8.8)$

- The forward energy at $|\eta| > 8.8$ shows a complementary behaviour to that observed for transverse charged particle multiplicity ($|\eta| < 0.8$). \rightarrow (anti-)correlation from initial stages
- Flattening for leading $p_T > 5$ GeV/c also observed at zero-degree \rightarrow ZN: additional constraint for MPI modeling

ALICE

Beauty and charm production in pp

- ML techniques applied to separate prompt and non-prompt D mesons
- Most precise measurement of fragmentation fraction of heavy quarks to strange mesons
- Most precise measurement of $\sigma(b\overline{b})$ at y=0 described by new most accurate calculation (NNLO)

ALICE

LS2 activities

Upgrades for Run 3: reminder

Main goal:

- Record minimum-bias Pb-Pb data at 50kHz (~ 1 kHz in Run 2)
- Collect 13/nb in Run 3&4 \rightarrow x 100 minimum bias statistics wrt Run 1&2

16 Nov: miniframe installation

December: MFT+FITC installation at P2

ITS installation tests

- On-surface commissioning completed in December
- Preparing for installation at P2
- Installation in the cavern is planned for mid March April

More activities

FIT:

- FDD-C installed in the LHC tunnel
- FDD-A to be installed in the ALICE cavern
- FIT-A detector assembled. Installation in June

Muon chambers:

- Stations 3-4-5 ongoing, to be ready by end of March
- Station 2 ready to be installed
- Station 1:
 - 6/8 quadrants installed
 - 2/8 ready @ Orsay -> installed by end of April

TPC:

- Fully connected to services
- First global runs with TOF
- Taking cosmics / Xray tests in continuous readout

Data processing in Run3

Visualization of 2 ms of 50 kHz Pb-Pb data as expected in the ALICE TPC in LHC Run 3 Basic processing unit: **Time Frame**(~10 ms of data ~500 collisions @ 50 kHz Pb-Pb) 3.5 TB/s to be processed online in real time by **~2000 GPUs** (continuous readout)

O2: Online processing

- First level processors (FLP):
 - Readout of detectors (3TB/s) and raw data processing
 - 200 FLPs in CR1

- Event processing nodes (EPN):
 - Synchronous event reconstruction
 - EPN servers delivered in Dec
 - Total: 250 EPNs with 2000 GPUs
 - Commissioning of data center is on-going
 - Significant progress in GPU processing

O2: simulations and analysis

Simulation

- Benchmarking with 100 event Time Frames on 8 core queues
- Run 3 Pb-Pb simulation is x2 faster than Run 2 without embedding
- Signal to Background embedding results in factor 4.7 increase of throughput
- Starting large-scale MC productions for Run 3

Analysis challenge

- Basic event selection, centrality estimation, track selection, PID response and secondary vertex finding
- 66 physics analysis tasks in O2 repository
- Running on Run 2 data samples converted into the new AOD format
- New organized distributed analysis AliHyperloop
- Benchmarking: factor 3-10 higher event throughput compared to Run 2 framework
 - optimisation ongoing

Updated schedule

- Schedule v43:
 - ITS installation starting 15 March (+2 weeks wrt v42)
 - 2.5 months contingency with respect to LS2 end date (-2 weeks wrt v42)
 - ALICE vacuum to be closed by June 2021
 - \rightarrow OK to inject low intensity beam by last week September 2021
- Preparing shifts for global commissioning: 2 onsite (operations) + 2 remote (monitoring)

			2020 2021			2022		
Pro	Jett -		May Jun Jul Aug Sep Oc	t Nov Dec Jan Feb Mar A	Apr May Jun Jul A	ug Sep Oct Nov Dec	Jan Feb Mar Apr May	
Begin date	End date	Dura		-				
6/3/19	31/7/20	368	TPC upgrade			LHC pilot run		
7/1/19	23/11/20	491		Work on services				
4/8/20	27/11/20	84		Reinstall TPC/beampipe	/Miniframe			
30/11/20	22/1/21	40		Install FIT-C	and MFT			
25/1/21	4/6/21	95			Install ITS			
7/6/21	11/6/21	5			Ēj FIT-A			
14/6/21	23/7/21	30			ן בכביים אוניים אוני	TS-MFT-FIT commissioning		
26/7/21	12/11/21	80			È	ALICE G	obal Commissioning	
1/2/22	1/2/22	0					LS2 end 1st February	
						2.5m)	

Future upgrades ALICE 3 **FoCal** ITS3 New heavy-ion experiment for Run 5 and beyond (not discussed today) Shower Fixel Detector (SPD) Time Of Flight (TOF) Cylindrical Structural Shel ~100cm Half Barrels insert-able conversion layer BEAMPIPE ~400cm FoCal + ITS3 ALICE 3 LS2 Run 3 LS3 Run 4 Run 5 LS4 Commissioning Physics run 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

FoCal concept

- Goal: saturation/shadowing at low-x with direct photons in pp/p-Pb
- Concept:
 - FoCal-E: Si-W sandwich calorimeter with granularity $\approx 1 \text{ mm}^2$
 - FoCal-H: conventional sampling calorimeter for photon isolation
- **TDR in 2022** aiming at installation for Run 4 in 2026

FoCal: preparation for test beams

1cm²-granularity sensors:

- Test sensors with 8x9 geometry received in Dec
 - Lab tests ongoing
- One-sensor PCB received in Jan
- Readout boards under production

High-granularity sensors (MAPS):

• 30-cm prototypes (9 ALPIDE chips) from pCT:

MAPS module design: 2x3 15-chip flex cables

• ITS2 readout chain

FoCal-H prototype:

- Cu capillary tubes
- 10cm x 10cm area, 60-80 cm depth

9 cm

PCB for one sensor

ITS3: new ITS for Run 4

Hattlayer

28

Characterisation of bent MAPS

- While waiting for the first wafer-scale chips, significant effort is made with existing material
- Bent assemblies are now done routinely with different methods at various institutes
- 3 beam tests at DESY during 2020 (Jun, Aug, Dec) with different arrangements
- Confirming that bent MAPS are working

ITS3: Mechanics

- Carbon foam selection has been done
- Engineering module of Layer 2 was produced

ITS3: chip submission in 65 nm

- First submission in the TowerJazz 65nm technology
 significant drive from ITS3
- Contains a comprehensive first set of structures to explore the technology:
 - transistor test structures
 - analog building blocks (band gaps, LVDS drivers, etc)
 - various diode matrices (small and large)
 - digital test matrices
- Estimated delivery: May 2021

Summary

- **Physics:** output is continuing
 - 8 new papers with precise measurements of several observables
- LS2 activities: ongoing according to schedule
 - all important detector parts are already at CERN
 - installation is continuing (MFT at IP, ITS ready)
 - readout and computing on track
 - 2.5 months contingency according to current planning
- Future upgrades: good progress
 - ITS3: chip submission in 65 nm + first bent mechanics prototypes
 - FOCAL: preparing prototype for test beams
 - ALICE3: working towards an Lol

BACKUP

Recent additions to the ITS3 physics case

 Λ_c^+

(udc)

enhancemen

 $(c\bar{u})$

Baryon

- Non-prompt D_s⁺ with machine learning
 - ITS3 remains important for a decisive measurement at low p_T

- Ξ_c⁺ measurement to shed more light on charm hadronisation and "enhancements" in pp, p-Pb, Pb-Pb wrt e⁺e⁻
- ITS3 key in reconstruction ($c\tau \approx 135 \ \mu m$)

