

Update on the Concept for a New ISOLDE Experimental Hall

Jose Alberto Rodriguez (BE-OP-ISO) Erwin Siesling (BE-OP-ISO) Eliseo Perez (SCE-DOD-FS) Johan Dauge (SCE-SAM-TG)

Outline:

- Introduction and Summary of the 2020 EPIC Workshop
- Initial 3D Model of the Facility
- Layout of the Underground and Surface Levels
- First Optics and Electromagnetic Models
- Summary

From 2019 and 2020 EPIC Workshops:

- Strong demand to increase the capacity of the facility (additional experimental stations, multi-user operation, handling of higher intensity and energy proton beams, additional target stations...)
- Improve existing and adding new capabilities to the facility (beam purification, real-time RIB production monitoring, possible AD-ISOLDE and nToF-ISOLDE physics...)

To address these needs:

- > A new low-energy experimental hall was proposed during the EPIC 2020 workshop (building, beamlines)
- > Located across the street of the existing ISOLDE hall where the CERN's recuperation building is (bld. 133)
- > The new experimental area (72 m x 50 m) could accommodate ~ 20 experimental stations
- > Two new underground target areas used to produce the RIBs required to serve the experimental stations
 - The construction of the new facility would **not interrupt the physics program of the existing facility**

In order to produce enough RIBs to sustain physics programs in all experimental stations, the new facility:

- Should be able to handle both 1.4 and 2.0 GeV protons
- Should be able to handle a potentially higher proton intensity from Linac4 and the PSB

> Should minimize the idle time in between experiments (i.e. parallel physics and set-up). Currently:

	2018	2017
Start date	April 10 th	April 24 th
End date	Nov. 12 th	Dec. 4 th
Number of days	215.6	224
Protons at ISOLDE	9.6E19	9.0E19
l _{AVG} [uA]	0.83	0.74
Effective I _{AVG} [uA]	~ 0.95	~ 0.85

- The typical average proton current during a campaign is ~ 0.8 uA
- Once scheduled stops, downtime, machine studies... are factored in, the effective proton current is still ~ 0.9 uA far from the available 1.5 uA
 - This gap is due to the time needed in between experiments for beam set-up, characterization and optimization, user requirements on the proton structure and occasional machine/target studies

199192

J.A. Rodriguez, E. Siesling, E. Perez, J. Dauge – 90th ISCC Meeting – Feb. 1st 2021

In order to produce enough RIBs to sustain physics programs in all experimental stations, the new facility:

- Should be able to handle both 1.4 and 2.0 GeV protons
- Should be able to handle a potentially higher proton intensity from Linac4 and the PSB
- > Should minimize the idle time in between experiments (i.e. parallel physics and set-up)
- Could be designed to profit from double-target front-ends:
 - Two target units in series in a target area to profit from the full proton current simultaneously
 - Each target unit is followed by a full on-line separator
 - Two RIBs delivered simultaneously to two different experimental stations
- > Could be capable of separating fast and slow released RIBs :
 - A pulsed electrostatic kicker synchronized with the proton impact used to separate fast and slow released RIBs into two different beam lines
 - Each beamline is equipped with its own mass separator dipole
 - The two RIBs can be delivered simultaneously to two different experimental stations

Outline:

- Introduction and Summary of the 2020 EPIC Workshop
- Initial 3D Model of the Facility
- Layout of the Underground and Surface Levels
- First Optics and Electromagnetic Models
- Summary

Initial 3D Model of the Facility:

- Thanks to the funds provided by the collaboration, colleagues from civil engineering have prepared an initial 3D model of the new experimental hall and the underground facilities
- Even though a lot of additional work is still needed, no blocking issues have surfaced so far and the proposal seems feasible

Initial 3D Model of the Facility: Top View

CERN

- Thanks to the funds provided by the collaboration, our colleagues from civil engineering have prepared an initial 3D model of the new experimental hall and the underground facilities
- Even though a lot of additional work is still needed, no blocking issues have surfaced so far and the proposal seems feasible

Initial 3D Model of the Facility: Connection to the PSB

> The connection between the PSB and the underground target area for the new ISOLDE hall studied

Tentative layout of the proton beam line prepared

Initial 3D Model of the Facility: Connection to the PSB

The connection between the PSB and the underground target area for the new ISOLDE hall studied

Initial 3D Model of the Facility: Cross Section

An optional tunnel between the two experimental halls being studied to profit from the new beam purification possibilities during the high-energy experiments

199192

Layout of the Underground and Surface Levels:

> The layout of the target / separator modified to reduce the cost of the proton beam line

CERN

J.A. Rodriguez, E. Siesling, E. Perez, J. Dauge – 90th ISCC Meeting – Feb. 1st 2021

RILIS / High Tension / CV Level:

Beam Distribution and Purification Level:

J.A. Rodriguez, E. Siesling, E. Perez, J. Dauge – 90th ISCC Meeting – Feb. 1st 2021

Layout of the Underground and Surface Levels:

199192

J.A. Rodriguez, E. Siesling, E. Perez, J. Dauge – 90th ISCC Meeting – Feb. 1st 2021

Outline:

- Introduction and Summary of the 2020 EPIC Workshop
- Initial 3D Model of the Facility
- Layout of the Underground and Surface Levels
- First Optics and Electromagnetic Models
- Summary

Optics and Electromagnetic Models: Mass Separator

First iteration completed. Performance and cost optimization still pending

- COSY Infinity optics model completed
- Main parameters of the dipole and coils defined
- CST electromagnetic model completed
- Particle tracking for different masses and energies
- Potential power converter identified

	CST EM Mod		Mass separation (1/350) for the with a 50 π -mm·mrad emitted of the second sec
	Panding radius [m]	0.75	Cooling circuit radius [mm]
	Gap [m]	0.75	Conductor cross-section [mm2]
	Gap [III]	0.07	# Conductors xy-plane per coil
		1 18/8	# Coils per magnet
	Edge angle [deg]	26.57	Resistance magnet [Ohm]
		20.57	
CEDNI	Flat field region [m]	0.13	Dimension xy with insulation [mm]

Model	COMET
Imax [A]	250
Vmax [V]	120
Vdrop at Imax [V]	79.5

199192

J.A. Rodriguez, E. Siesling, E. Perez, J. Dauge – 90th ISCC Meeting – Feb. 1st 2021

12

0.318

99 x 108

Optics and Electromagnetic Models: Electric Benders

First iteration for the 45 deg. electrostatic spherical benders completed

- COSY Infinity optics model completed
- CST electromagnetic model completed
- Particle tracking for beams with different emittances
- Several combinations studied (90 deg. bending, laser injection for ionization, beam gates...)

Pulsing options:

Outline:

- Introduction and Summary of the 2020 EPIC Workshop
- Initial 3D Model of the Facility
- Layout of the Underground and Surface Levels
- First Optics and Electromagnetic Models
- Summary

Summary:

- > Concept for a new ISOLDE experimental hall introduced during the EPIC Workshops
 - Located at CERN's recuperation building (bld. 133)
 - Maximize the production of RIBs using double-target front-ends and time separation kickers
 - Protons from the PSB using the TT70 tunnel
 - Underground levels: Target/Separators, RILIS/HT/CV, Beam distribution and purification
 - Surface building dedicated to low-energy physics (space for ~ 20 experimental stations)
- > Initial 3D model created by the Site and Civil Engineering (SCE) department
 - Both building and the connection to the PSB studied
 - Concept seems feasible from the civil engineering point of view
- > Initial optics and electromagnetic models of critical elements developed by the Beams (BE) department
 - Separator dipoles
 - Electrostatic benders

Facility Cross Section:

J.A. Rodriguez, E. Siesling, E. Perez, J. Dauge - 90th ISCC Meeting - Feb. 1st 2021

199192

J.A. Rodriguez, E. Siesling, E. Perez, J. Dauge - 90th ISCC Meeting - Feb. 1st 2021

A2