An analysis of air shower data using Neural Networks

By Miro Joensuu

Contents

The Experiments

- Maket-Ani
- KASCADE
- Airshowers

Neural Networks

- Basic architecture
- Learning
- Feed forward network

My work so far

- Optimization of Network
- Preliminary training results
- Outlook

The Experiments

Maket-Ani

- Decommissioned cosmic ray experiment in Armenia
- Open and reusable data on KCDC datacentre
- No available simulation data
- Small number of features

KASCADE

- Cosmic ray experiment in Karlsruhe, Germany
- Available simulation data to train network
- More measured features

Airshowers

Shower Simulation using CORSIKA — Detector simulation using CRES Data reconstruction using KRETA Experiment

Airshowers

Input (true shower information)

Output (reconstructed information)

Neural Networks

Feed forward network

Predicted mass

 \rightarrow Complex Tool for fitting predicted mass to reconstructed information

My work

Main ideas

- Optimize network architecture
- Distinguish between proton and iron
- Quantify accuracy of network

Network architecture

- Desired output $\rightarrow \ln(M_{H,He,C,Si,Fe})$
 - Distance between possible outputs \rightarrow 1
- Loss function → SmoothL1Loss
 - \circ Increases punishment after ± 0.5
- Network with 2 hidden layers
 - 8 10 5 1
- Optimizer \rightarrow Adam

• Adaptive learning rate

kaggle

Optimization of architecture

Results

- Quantify using element plots
 - Probability to predict a certain mass for each element
- So far best model using all elements

33% accuracy 1.35 nats Kullback-Leibler divergence between Proton and Iron

Removing carbon from training set

- Clearer distinction between Proton and Iron
- Worse prediction for Helium

39% accuracy 13.99 nats Kullback-Leibler divergence between Proton and Iron

Outlook

- Use network on experimental data & compare with literature
- Implement network optimized by optuna
- Implement support vector regression
- See how well network performs on reduced data set (Maket-Ani)

References

Thank you to Paras Koundal from the KIT for tutoring & to Wladyslaw Trzaska for the support at CERN $~^{igsymbol{\sqcup}}$

 \square

https://pytorch.org https://optuna.org https://www.kaggle.com https://scikit-learn.org/stable/index.html https://kcdc.ikp.kit.edu/static/pdf/kcdc_mainpage/Maket-Ani-Manual.pdf https://kcdc.ikp.kit.edu/static/pdf/kcdc_mainpage/kcdc-Simulation-Manual.pdf https://machinelearningmastery.com/divergence-between-probability-distributions/ https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/ https://www.iap.kit.edu/kascade/english/index.php