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The Experiments




Maket-Ani

Decommissioned cosmic ray experiment in Armenia
Open and reusable data on KCDC datacentre

No available simulation data
Small number of features




KASCADE

e Cosmic ray experiment in Karlsruhe, Germany
e Available simulation data to train network
e More measured features




Airshowers

Shower Simulation using CORSIKA — > Detector simulation using CRES

.

Data reconstruction using KRETA
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Airshowers
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Neural Networks




Basic architecture
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Learning
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Feed forward network

Reconstructed Predicted mass
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My work




Main ideas

e Optimize network architecture
e Distinguish between proton and iron

e Quantify accuracy of network




Network architecture

e Desired output 2 In(My ye ¢ sire)
o Distance between possible outputs > 1

e Loss function 2 SmoothL1Loss ( J

o Increases punishment after +£0.5

e Network with 2 hidden layers
o 8-10-5-1
e Optimizer - Adam

o Adaptive learning rate
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Optimization of architecture

e Hyperparameter optimization O 0 P T U N ﬂ

o Where does the loss function converge fastest

e Recommended struc:%'
o 3layers (8-9-14-10-1)

o Optimiz
e Not tested
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Results

e Quantify using element plots
o Probability to predict a certain mass for each element

e So far best model using all elements

Proton Helium 33% accuracy
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Removing carbon from training set

e C(Clearer distinction between Proton and Iron
e Worse prediction for Helium

Proton Helium 390 accuracy

13.99 nats Kullback-Leibler
divergence between Proton
and Iron
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Outlook

e Use network on experimental data & compare with literature
e |Implement network optimized by optuna
e |Implement support vector regression

e See how well network performs on reduced data set (Maket-Ani)
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