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We will discuss the most important concepts and methods of statistical data 
analysis used in HEP.

• Basic formalism

• Discovery and Limits

• Estimators and parameter 
estimation

• Machine Learning Basics

The aim is allow you to discuss HEP limit setting and understand the basic 
concepts of machine learning techniques

Introduction
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Useful references

[1] G. Cowan, Statistical Data Analysis, Oxford University Press, 1998

• These slides are mostly stolen from/inspired by the set of 
Prof. Cowan’s academic training lectures (https://indico.cern.ch/event/77830/)

[2] F. James, Statistical methods in experimental physics, 2nd ed., World 
Scientific, 2006

[3] L. Lyons, Statistics for nuclear and particle physicists, Cambridge University 
Press, 1986

[4] T. Hastie, R. Tibshirani, J, Friedman, The Elements of Statistical Learning (2nd 
ed.), Springer Series in Statistics, 2001

• Statistics Tools (ROOT based packages): RooStats, RooFit, HistFitter

• Machine learning (python based): TensorFlow, PyTorch, …
(fun ML playground http://playground.tensorflow.org)

https://indico.cern.ch/event/77830/
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.50781&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
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Definitions (lookup table)

• x observable

• H hypothesis

• P(x|H) probability of x given the hypothesis H

• f(x|H) probability density function / probability model

• L(x|H) likelihood of the hypothesis

• W data space

• w critical region

• α test size / test significance level



BASIC FORMALISM
• Frequentist and Bayesian Probability

• Hypothesis testing

• Type-I, Type-II errors and statistical power

• Test statistics

• p-values

“Bayesians address the questions everyone is 
interested in by using assumptions 

that no one believes.
Frequentist use impeccable logic to deal with an 

issue that is of no interest to anyone.”
- Louis Lyons 
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Frequentist statistics

In frequentist statistics, probabilities are associated only with the data, i.e. 
outcomes of repeatable observations.

Probabilities such as 

• P (Higgs boson exists)

• P (0.117 < αs < 0.121)

are either 0 or 1, but we don’t know which. 

• The preferred theories (models, hypotheses, ...) are those for which our 
observations would be considered ‘usual’. 
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Bayesian statistics

In Bayesian statistics, interpretation of probability extended to degree of belief 
(subjective probability).

• Bayesian methods can provide more natural treatment of non- repeatable 
phenomena: e.g. systematic uncertainties

• No golden rule for priors

posterior 
probability

Normalize over all possible hypotheses

prior 
probability

Probability of the data 
assuming the hypothesis H
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Nomenclature

A hypothesis H specifies the probability for the data x, i.e. the outcome of the 
observation.

• f(x|H) is the p.d.f. or probability model (or just model)

• f(x|H) could be uni-/multivariate, continuous or discrete

• f(x|H) could be the observation of a single particle, a single event, or an entire 
“experiment”

• Possible values of x form the data space W

• Simple hypothesis: f(x|H) completely specified

• Composite hypothesis: H contains unspecified parameters 

• The probability for x given H is also called the likelihood of the hypothesis, 
written L(x|H). 
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Hypothesis test

• Consider a simple hypothesis H0 and alternative H1. 

• A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability α, 
assuming H0 is correct, to observe the data there. 

P(x∈w|H0) ≤ α
(just < if data are discrete)

α is called the size or significance 
level of the test.

• If x is observed in the critical region, 
reject H0.

data space W
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Type-I, type-II errors and power of the test

Type-I error: reject the hypothesis H0 when it is true.

• The maximum probability for 
this is the size of the test

P(x ∈ w | H0) ≤ α

Type-II error: accept H0 when it is 
false, and an alternative H1 is true.

• This occurs with probability 

P(x ∈ W - w | H1 ) = β

One minus this is called the power of the test with respect to the alternative H1: 
Power = 1 - β 
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Test definition

In general there are an infinite number of possible critical regions that give the 
same significance level α. 

• Maximize power with respect to H1 - maximize probability to reject H0 if H1 is 
true. 

f(x|H1)

f(x|H0) Critical 
region

x
α
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Example

• Measuring x ~ Gauss (μ, σ) we may test H0: μ = μ0 vs H1 : μ > μ0 

• The highest power with respect to any μ > μ0 is obtained by taking the critical 
region x ≥ xcut-off where xcut-off is determined by the significance level 
such that α = P(x ≥ xcut-off | μ0).

where:
Φ Standard Gaussian cumulative 
distribution
Φ -1 Standard Gaussian quantile 
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Model independence

• In HEP we often construct a test of H0 : Standard Model (or “background only”) 
such that we have a well specified “false discovery rate” (α) and high power 
with respect to some interesting alternative H1 : SUSY, Z′, etc. 

• But there is no such thing as a “model independent” test.

• No “Uniformly Most Powerful” test: any statistical test will have high power with 
respect to some alternatives and less power with respect to others. 
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Rejecting a hypothesis

Note that rejecting H0 is not necessarily equivalent to the statement that we 
believe it is false and H1 true.

• In frequentist statistics only associate probability with outcomes of repeatable 
observations. 

• In Bayesian statistics, probability of the hypothesis (degree of belief) would be 
found using Bayes’ theorem: 

which depends on the prior probability π(H). 

• What makes a frequentist test useful is that we can compute the probability to 
accept/reject a hypothesis assuming that it is true, or assuming some 
alternative is true. 
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Test statistics

• The boundary of the critical region for an n-dimensional data space 
x = (x1, ..., xn) can be defined by an equation of the form

where t(x1, ..., xn) is a scalar test statistic. 

The decision boundary is now a single 
‘cut’ on t, defining the critical region. 

• For an n-dimensional problem we 
have a corresponding 
1-dimensional problem. 
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The likelihood function

• Suppose the entire result of an experiment (set of measurements) is a 
collection of numbers x, and suppose the pdf for is a function that depends on 
a set of parameters θ:

• Now evaluate this function with the data obtained and regard it as a function of 
the parameters. This is the likelihood function: 

• Consider n independent observations of x: x1, ..., xn, where x follows f(x; θ). 
The joint pdf for the whole data sample is: 

• In this case the likelihood function is 

for fixed data x
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The optimal critical region

The Neyman-Pearson lemma states: 

• For a test of size α of the simple hypothesis H0, to obtain
the highest power with respect to the simple alternative H1, choose the critical 
region w such that the likelihood ratio satisfies 

everywhere in w and is less than k elsewhere, where k is a constant chosen 
such that the test has size α. 

• The optimal scalar test statistic is then

N.B. any monotonic function of this is leads to the same test. 
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p-values

We can express level of agreement between data and a hypothesis H with a 
p-value:

• p = probability, under assumption of H, to observe data with equal or lesser 
compatibility with H

• This is not the probability that H is true! 

• In frequentist statistics we don’t talk about P(H) (unless H represents a 
repeatable observation).
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Significance from p-value

• We can define the significance Z as the number of standard deviations that a 
Gaussian variable would fluctuate in one direction to give the same p-value. 
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Significance of an observation

Suppose we observe n events; these can consist of: 

• nb events from known processes (background) 

• ns events from a new process (signal)

• If ns, nb are distributed like a Poisson with means s, b, then n = ns + nb is also 
Poisson, mean = s + b:

• Suppose b = 0.5, and we observe nobs = 5.

Should we claim evidence for a new discovery? 

• consider hypothesis s = 0: 
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Test of H0 using a p-value

• We started by defining critical region in the original data space W, then 
reformulated this in terms of a scalar test statistic t(x). 

• We can now define the critical region of a test of H0 with size α as the set of 
data space where p0 (p-value of H0) ≤ α.

• Formally the p-value relates only to H0, but the resulting test will have a given 
power with respect to a given alternative H1. 



Discovery and limits in 
HEP
• The likelihood ratio

• Discovery

• Exclusion
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The likelihood ratio

In a real-world problem we usually wouldn’t have the pdfs f(x | H0) and f(x | H1), so 
we wouldn’t be able to evaluate the likelihood ratio

For a given observed x, we need methods 
to approximate this with some other 
function. 

• Using Monte Carlo, we can find the 
distribution of the likelihood ratio
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Claiming a discovery

If the signal process is not known to exist and we want to search for it, the relevant 
hypotheses are therefore:

• H0: all events are of the background type

• H1: the events are a mixture of signal and background 

• Rejecting H0 with Z > 5 constitutes “discovering” new physics.

• Suppose that for a given integrated luminosity, the expected number of signal 
events is s, and for background b.
The observed number of events n will follow a Poisson distribution: 
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Claiming a discovery

We observe n events, and thus measure n instances of x = (x1, x2). 
The likelihood function for the entire experiment assuming the background-only 
hypothesis (H0) is

and for the “signal plus background” hypothesis (H1) it is 

where πs and πb are the (prior) probabilities for an event to be signal or 
background, respectively. 
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Claiming a discovery

We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an observed value of Q 
we need the distributions f(Q|b) and f(Q|s+b). 

• the term -s in front is a constant and can be dropped. 

• the rest is a sum of contributions for each event, and each term in the sum has 
the same distribution. 
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Q

If ps+b < α, reject signal model s at confidence level 1 – α. 

If pb < 2.9 × 10-7, reject background-only model (significance Z = 5).
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The profile likelihood ratio

Assume a counting experiment to search for signal in a region of phase space

• result is ni Poisson distributed with expectation values 

Often also have a subsidiary measurement that constrains some of the 
background and/or shape parameters mi

• Also Poisson distributed

• Likelihood function is 
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The profile likelihood ratio

Base significance test on the profile likelihood ratio: 

The likelihood ratio of point hypotheses gives optimum test (Neyman-Pearson 
lemma). 

• The profile LR in the present analysis with variable μ and nuisance parameters 
θ is expected to be near optimal. 
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Choice of a test for discovery

If μ represents the signal rate, then discovering the signal process requires 
rejecting H0 : μ = 0. 

• Often our evidence for the signal process comes in the form of an excess of 
events above the level predicted from background alone, i.e. μ > 0 for physical 
signal models. 

• So the relevant alternative hypothesis is H1 : μ > 0.

• In other cases the relevant alternative may also include μ < 0 (e.g., neutrino 
oscillations). 

• The critical region giving the highest power for the test of μ = 0 relative to the 
alternative of μ > 0 thus contains high values of the estimated signal rate. 
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Test statistic for discovery

Try to reject background-only (μ = 0) hypothesis using 

• only regard upward fluctuation of data as evidence against the 
background-only hypothesis. 

Note that even though here physically μ ≥ 0, we allow μ to be negative.

• In large sample limit its distribution becomes Gaussian, and this allows us to 
write down simple expressions for distributions of our test statistics. 
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p-value for a discovery

• Large q0 means increasing incompatibility between the data and hypothesis, 
therefore p-value for an observed q0,obs is
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The look elsewhere effect

In the frequentist approach, the correct p-value of the no-peak hypothesis is the 
probability, assuming background only, to find a peak as significant as the one 
found anywhere in the search region.

• This can be substantially higher than the probability to find a peak of equal or 
greater significance in the particular place where it appeared. 

There is no look-elsewhere effect when considering exclusion limits. 

• With exclusion, when testing many signal models (or parameter values) we 
might exclude some even in the absence of signal (“spurious exclusion”) 

• https://xkcd.com/882/

https://xkcd.com/882/
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How to read the p0 plot

• The “local” p0 means the p-value of the background-only hypothesis obtained 
from the test of μ = 0 at each individual mH, without any correct for the 
Look-Elsewhere Effect.

• The “Sig. Expected” (dashed) curve gives the median p0 under assumption of 
the SM Higgs (μ = 1) at each mH. 
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https://arxiv.org/abs/1207.7214
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Choice of a test for exclusion

Suppose the existence of the signal process (μ > 0) is not yet established. 

• The interesting alternative in this context is μ = 0. 

• We want to know what values of μ can be excluded on the grounds that the 
implied rate is too high wrt to what is observed in the data. 

• The critical region giving the highest power for the test of μ relative to the 
alternative of μ = 0 contains low values of the estimated rate. 

• Test based on one-sided alternative → upper limit. 

• In other cases (not treated here) we want to exclude μ on the grounds that 
some other measure of incompatibility between it and the data exceeds some 
threshold. E.g. the process may be known to exist, and thus μ = 0 is no longer 
an interesting alternative.



Page 36| HASCO 2021 | Federico Meloni, 20/07/2021

Test statistic for exclusion

For purposes of setting an upper limit on μ one may use

• When setting an upper limit, one does not regard an upwards fluctuation of the 
data as representing incompatibility with the hypothesized μ.

• From observed qμ find p-value:

• The 95% CL upper limit on μ is highest value for which p-value is not less than 
0.05. 
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Spurious Exclusion

Use the power (P to reject μ if μ = 0) as measure of sensitivity

• Having sensitivity to μ means that the distributions f(qμ|μ) and f(qμ|0) are well 
separated. The power is substantially higher than α. 

• In the case of low sensitivity, the power is only slightly greater than α. 

• “Spurious exclusion”: with probability of around α = 5% (slightly higher), one 
excludes hypotheses to which one has essentially no sensitivity
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The CLs procedure

The CLs solution (A. Read et al.) is to base the test not on the usual p-value 
(CLs+b), but rather to divide this by CLb (one minus the p-value of the b-only 
hypothesis)

• Reject the s+b 
hypothesis if
CLs = (CLs+b/CLb) < α 

 

• Increases the “effective” p-value when the two distributions become close 
(prevents exclusion if sensitivity is low). 
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The CLs procedure

• Like we saw before, having low sensitivity means that the distributions of Q 
under b and s+b are very close.
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Setting upper limits

Carrying out the CLs procedure for the parameter μ = σ/σtheory results in an upper 
limit μup.
E.g. in the Higgs search, this was done for each value of mH. 

• At a given value of mH, we have an observed value of μup, and we can also find 
the distribution f(μup|0).

• ±1σ (green) and ±2σ (yellow) bands
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How to read exclusion plots

For every value of mH, find:

• The CLs upper limit on μ and the distribution of upper limits μup for μ = 0.

• The dashed curve is the median μup, and the green (yellow) bands give the 
± 1σ (2σ) regions of this distribution. 
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https://arxiv.org/abs/1207.7214
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How to read exclusion plots

Expected excluded mass range 
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How to read exclusion plots

Observed excluded mass range 
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How to read 2D exclusion plots

A typical SUSY exclusion plot.

• More complex signals with dependencies from multiple unknown parameters.

• Often the two axes represent 
two sparticle masses.

• Here, for every choice of m(χ2), m(χ1) 
find the CLs upper limit on μ.

• The lines and bands show the 
contours of μ = 1 (or CLs = 0.05)

• The dashed curve is the median 
μup=1, with the yellow bands giving 
the ± 1σ regions (for SM uncertainties)

• Dashed red lines are the ± 1σ 
regions (for signal theory uncertainties)

ar
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https://arxiv.org/abs/2102.01444


Parameter estimation
• Parameter fitting

• Properties of estimators

• Likelihood and maximum likelihood estimators
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Estimators and parameter estimation

The central problem of statistics is to infer the properties of f(x) based on a sample 
of observations x = (x1 , … , xn).

• Specifically, one would like to construct functions of the xi to estimate the 
various properties of the p.d.f. f(x). 

• The parameters of a pdf are constants that characterize its shape, 
e.g. 

random variable       parameter 

•      ← estimators are written with a hat 

• Estimator is typically the function of x1, ..., xn

• Estimate the value of the estimator with a particular data set. 
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Estimator properties

The estimates from each experiment repetition follow a pdf:

We want small (or zero) bias (systematic error): 

• average of repeated measurements should tend to true value 

And we want a small variance (statistical error): 

• small bias & variance are in general conflicting criteria 
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Maximum likelihood estimators

The maximum likelihood (ML) estimators for the parameters are those which 
maximize the likelihood function.

• If the hypothesized θ is close to the true value, then we expect a high 
probability to get data like that which we actually found. 

• ML estimators are not guaranteed to have any ‘optimal’ properties, (but in 
practice they’re very good). 

Results with 
non-ML estimators
(params further 
away 
from real values)
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Example

Assume our data is distributed according 
to a Gaussian(μ,σ).

• Let’s compute the MLE for μ

• Find the minimum of the –ln L(x | μ,σ)

• The MLE estimator for μ is the sample mean



MACHINE LEARNING
• Basic terminology

• Classical approaches to prediction

• Bias-variance trade-off

• Introduction to Neural Networks

“In God we trust, all others bring data.”

- William Edwards Deming 
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Basic Terminology

The goal of machine learning is to predict results based on incoming data. 

Features (also parameters, or variables): these are the factors for a machine to 
look at. E.g.: cartesian coordinates, pixel colors, a car mileage, user's gender, 
stock price, word frequency in the text.

• Quantitative (x = {1.02, 0.21, 0.12, 2})

• Qualitative discrete (x = {medium, small, large}) or categorical (x={red, blue, 
green})

Algorithms (also models): Any problem can be solved in different ways. The 
method you choose affects the precision, performance, and size of the final model. 

• If the data is insufficient/inapproriate (e.g. statistically limited or missing 
important features), even the best algorithm won't help. Pay attention to the 
accuracy of your results only when you have a good enough dataset.
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Image credit: https://vas3k.com/blog/machine_learning/OUR FOCUS

https://vas3k.com/blog/machine_learning/
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Prediction: Least squares

The linear model is one of our most important tools in statistics.

• Given a vector of inputs XT
 = (X1, X2, ..., Xp), we predict the output Y via

• The term β0 is the intercept, also known as the bias in machine learning

How do we fit the linear model to a set of data?

• The most popular method is the method of least squares: pick the coefficients 
β to minimize the residual sum of squares (RSS)

• RSS(β) is a quadratic function of the parameters, and hence its minimum 
always exists, but may not be unique.
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Prediction: Least squares

Data were simulated with 
outputs being either BLUE 
or ORANGE.

A linear regression model 
was fit to the data, used 
here as training dataset.

The fitted values Y are 
converted in a 
classification according to 

Image from [4]
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Prediction: nearest neighbor classifier

An alternative algorithm for classification is the method of nearest neighbors.

Nearest-neighbor methods use those observations in the training set closest in 
input space to x to form Y.

The k-nearest neighbor fit for Y is defined as: 

where Nk(x) is the neighborhood of x defined by the k closest points xi in the 
training sample.

Closeness implies a metric, which in our case we assume is Euclidean distance.

In words, we find the k observations with xi closest to x in input space, and 
average their responses. 
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Prediction: nearest neighbor classifier

Image from [4]



Page 57| HASCO 2021 | Federico Meloni, 20/07/2021

Perfect classification?

Image from [4]
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Comparison

To compare the different 
algorithms, let’s define a 
loss (or cost) criterion.

• Here, we can take the 
rate of misclassifications

In order to compare the 
performances, let’s 
introduce a second, 
independent, dataset to 
evaluate the performance: 
the test dataset.

Image from [4]
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Bias-variance tradeoff

The training error tends to decrease whenever we increase the model complexity, 
that is, whenever we fit the data harder.

• With too much fitting, the model adapts itself too closely to the training data, 
and will not generalize well (i.e., have large test error). 

• In contrast, if the model is not complex enough, it will underfit and may have 
large bias, again resulting in poor generalization.

Image from [4]
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Where are the fancy neural networks?

Image credit: https://vas3k.com/blog/machine_learning/

https://vas3k.com/blog/machine_learning/
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Neural Networks

Any neural network is a collection of neurons and connections between them.

Neuron is a function with a set of inputs and one output. Its task is to take all 
numbers from its input, apply a function on them and send the result to the output.

• Example: sum up all numbers from the inputs and if that sum is bigger than N 
give 1 as a result. Otherwise return zero.

Connections are like channels between neurons. They connect outputs of one 
neuron with the inputs of another so they can send digits to each other. Each 
connection has only one parameter the weight. 

• These weights tell the neuron to respond more to one input and less to 
another. Weights are adjusted when training — that's how the network learns.
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How do NNs work?

a0
(1) = f (w0,0 a0

(0) + w0,1 a1
(0) + … + w0,n an

(0) + b0)

layer

weights bias
activation
function

 



Page 63| HASCO 2021 | Federico Meloni, 20/07/2021

How do NNs learn?
After we constructed a network, our task is to assign proper weights so neurons 
will react correctly to incoming signals.

• define a loss function to measure how far the response is from the truth

This function is a function of all the weights and biases in the NN (a priori a very 
large number), and the goal of training is to find its minimum.

• To start with, all weights are assigned randomly.

• After evaluating the NN on the training
dataset, we can compute all the 
per-neuron differences with respect 
to the correct result.

• Computing the gradient of the loss,
gives us a direction in which to tune the
weights towards a local minimum

The process of correcting the weights is 
called backpropagation of an error.
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There are many more…

We’ll see some together in the lab tomorrow!



Done!

Thanks a lot for 
your attention!

Questions?

I’m here until Friday! Or:

federico.meloni@desy.de


