

Detector Physics – Part 2

Jörn Grosse-Knetter

HASCO Summer School 2021

1st part (prev. talk):

- Particle detection concepts: detection vs identification
- Interaction radiation/matter: charged vs neutral particles
- Ionisation detectors: electronic detectors
- Excitation and scintillation: light detectors
- Tracking concepts: from track reconstruction to vertex finding
- 2nd part (this talk):
 - Calorimeters: electromagnetic and hadronic showers
 - Overall detector system concepts

Calorimeters

Electromagnetic Shower (1)

- Alternating Bremsstrahlung and pair creation
- Every ~X₀: doubling of no. particles N, ~halves energy per particle → N ∝ incid. Energy E_i

- Need to drive shower process and at the same time measure shower particles
- Measurement via ionisation charge or (scitillation/Čerenkov/...) light:
 - Signal is proportional to "track length" ~ N
 - With N ∝ E_i → Signal ∝ E_i
- Shower scales
 - Longitudinally with X₀, but only logarithmically in E_i
 - Laterally: scales with R_M ~ ZX₀

Longitudinal Profile

absorber & detector: the same

separate absorber and detector

Homogeneous

- Material:
 - Scintillators (crystals)
 - Čerenkov-Radiators
 - (Semiconductors)
 - (Liquid gases)
- Good Resolution
- Small X₀: difficult
- Segmentation?

Sampling

- altern. detector material:
 - Scintillators (plastic)
 - (Liquid)gases
 - (Semiconductors)
 - + Absorber:
 - Fe, Pb, W, U
- Compact, easily segmented
- Poorer resolution

Intrinsic ("stochastic") fluctuations:

- Shower processes have intrinsic fluctuations (QM) nature of processes) → N follows Poisson statistics
- $\rightarrow \sigma_N = \sqrt{N}$
- With N \propto E \rightarrow $\sigma_{\rm E} \propto \sqrt{\rm E}$ or $\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}}$
- Sampling fluctuations
 - Homogeneous calorimeters: observe entire signal, sampling: only a fraction is observed → poorer stat.
 - Absorber thickness d → observed signal ∝ E/d →

$$\frac{\sigma_E}{E} \propto \sqrt{\frac{d}{E}}$$

Sampling Fluctuations

- Similar to sampling effect, also $\frac{o_E}{F} \propto \frac{1}{\sqrt{F}}$:
 - Missing (fluctuating) parts of signal due to leakage effects
 - Intrinsic fluctuations in measured signal (Landau and path length fluctuation) - typ. "thin" media like gas
- Noise from read-out (electronics, PMT, ...)
 - Size of noise independent of shower → const. in E $\rightarrow \frac{\sigma_E}{F} \propto \frac{1}{F}$
- Signal ∝ E must be calibrated → limited precision scales with E, leads to $\frac{\sigma_E}{E} \propto \text{const.}$

Energy Resolution (3)

In total, we get:

dominating term dep. on calor. type:

- Similar to em shower, hadronic processes lead to a shower of particles \rightarrow same concepts as before (also resolution)
- Generally, much larger due to $\lambda \gg X_0$, no good homogenous calorimeter → only sampling
- Additional complication:
 - em showers are simple: just γ, e[±]
 - Hadron showers are more complex:
 - Pure hadronic part, visible $(\pi^{\pm}, p, ...)$
 - Electromagnetic (large fraction due to e.g. $\pi^0 \rightarrow \gamma \gamma$)
 - Invisible (n, nuclear fragments)
 - Escaped (v)

Content of a had. Shower (1)

Content of a had. Shower (2)

- Composition varies with energy → non-linearity
- Stat. variation in composition (shown by "error bars")
 - → fluctuations in resolution

- Net result: different response from calorimeter to electromagnetic shower, e.g. from e, and to hadronic shower, e.g. from π^{\pm}
- Ratio of response often noted as e/h (>1 w/o any further action)
- Cure: compensation to achieve e/h=1
 - Enhance h signal, e.g. by recovering n-contribution
 - Plastic scintillators well suited for n detection
 - Tune effect by thickness ratio absorber/plastic → also affects resolution due to sampling effect
 - Reduce e-signal, e.g. by identifying "compact" shower and post-processing

Hardware Compensation

- Tuning e/h and the resolution by adjusting absorber thickness for fixed plastic scintillator (PMMA) thickness
- Depends on absorber → different nuclear processes

Software Compensation

- Aim: identify em subshowers → need a fine segmentation of calorimeter
- Identify cells with high energy density and reweight cell energy E_i:
 E_i' = E_i·(1-C·E_i)
- Parametrise C as function of (unweighted) jet energy

- Inner part: tuned for em showers ($\lambda \gg X_0$)
 - Homogeneous: only few crystals with useful X0 available
 - Sampling: variety of material
 - Choice drives resolution, but also other requ.: readout speed, radiation hardness,...
 - Segmentation: separation of individual particles, e.g. photons from $\pi^0 \rightarrow \gamma \gamma$
- Outer part: tuned for had. showers
 - Size is critical: avoid leakage problems
 - Decide if sw/hw-compensation is required → e.g. fine segmentation

Overall detector system concepts

Multi-layer HEP Detector

Complementary Measurements

- Tracking: measure momentum p
- Resolution degrades with rising p

- Calorimeter: measure energy E
- Resolution improves with rising E

- Inner detector layers influence outer layers
 - Multiple scattering: influence on tracking itself, but also on track-calo. matching
 - Possible photon-conversion and Bremsstrahlung → calorimeter doesn't measure "original" e, y
 - → keep material as low as possible
- Material budget is not just the pure detector (gas or silicon): cables, cooling pipes, support structures,... contribute as well

- Muons penetrate calorimeter layers → detector in outermost layer
- Independent tracking system
 - Magnetic field: return yoke from inner tracking system (CMS), or additional magnets (ATLAS)
 - Complementary momentum measurement
 - Adjust for energy loss in calorimeter: several processes, contribution is energy dependent

- Combine measurement with inner tracking system:
 - Each provides independent momentum measurement → reduce syst. error
 - More hits and larger L improves resolution

Real Detectors

Real Detectors

