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- [Ekimmal Ovutline of the Detector lecture

» 1stpart (this talk) —
- Particle detection concepts: detection vs identification
- Interaction radiation/matter: charge vs neutral particles
- lonization detectors: electronic detector
- Excitation and scintillation: light detector
- Tracking: from track reconstruction to vertex finding

e 2nd part (next talk)

—

- Calorimeters: Electromagnetic and hadronic showers
- Overall detector system concepts

- Near future developments
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GEORG-AUGUST-UNIVERSITAT =
. @ | cormnaen Questions to answer today

Introduction to basic concepts of particle interaction
 how the various particles interact with matter?

* which type of detectors are best to use for?

 |Introduction to main concepts of tracking detectors

* how to extract tracks/vertices from single hits?
* how to design a tracking detectors?

* how does a tracker nowadays look like? e
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- GEORG-AUGUST-UNIVERSITAT . . .
. (A GOTTINGEN A few detection principles

« Detection (counting) vs identification (mass/charge measurement) of particles

 Different type of interactions for charged and neutral particles

« Different “scale” processes for electromagnetic and strong interactions
” deduction.

= Evolution from pure “Image” reconstruction to “Electronics image

15
o

Pion discovery (1947) via nuclear emulsion
« Detection/ldentification based on different type of interaction of the incoming particles

(originated from the collisions) with matter:
« Charged particles (lonization, Bremsstrahlung, Cherenkov)

(Photo-electric/Compton effect, pair production)

|
1

i "
|

Z, boson discovery at UA1 CERN (1983)

 y-radiation
* Neutrons (Strong interactions)
* Neutrinos (Weak interactions)
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. (G S Particle detection at LHC

* The detector sees only “stable” particles (ct > 500 ym)
=» 8 most frequently produced e?, pi, y, %, K&, K9, p%, n

| » To detect a particle, it has to
interact/deposit energy:
e could be a part
(trackers) or the full
(calorimeters) energy!

« Ultimately, the signals
comes from the charged
particle interactions:

* Neutral particles
(photons, neutrons) must
transfer their energy to
charged particles to be
measured (calorimeters)
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C JGEORG-AUGUST-UNIVERSITAT . . .
WA GOTTINGEN Electromagnetic Interactions Particles/Matter

Three type of electromagnetic interactions:

1. Excitation/lonization (of the atoms of the traversed material)

2. Emission of Cherenkov light How the energy loss
3. Emission of Transition Radiation became a fundamental

quantity instead of a
Z, electrons, q=-¢, prime issue!

M, a=2: & In case the particle's
velocity is larger than the
velocity of light in the

@ medium, the resulting EM
shockwave manifests itself
as Cherenkov Radiation.

Interaction with the atomic | | Interaction with the atomic When the particle crosses
electrons. The incoming nucleus. The particle is the boundary between two
particle loses energy and the | | deflected causing multiple media, there is a probability
atoms are excited or ionized. | | scattering in the material. During (~1%) to produced an X ray
this scattering a photon, called Transition
can be emitted. radiation.
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“ GEORG-AUGUST-UNIVERSITAT -
. @J GOTTINGEN Energy loss for heavy charge particles

* For heavy charged particles like proton, k, T, {4, .. where m;,cigent > Me
« dE/dx can be described by Coulomb interaction and simple kinematics

Classic Bohr’s stopping power = Quantum mechanic “Bethe-Bloch”

What's the average energy lost —<dE> [MeV] in a material thickness dx [em]?

2 2(@
—<d—E> N~ 2 ln(zmejzwmax>-2ﬁ2 -8B~

dx

1 Fundamental constants
=0.1535 MeV cm?/g r.=classical radius of electron
m,=mass of electron
N_=Avogadro’ s number

Absorber medium ¢ =speed of light
| = mean ionization potential Incident particle
Z = atomic number of absorber || Z = charge of incident particle
A = atomic weight of absorber B = v/c of incident particle

p = density of absorber y = (1-p2)12
= density correction W, .= max. energy transfer
C = shell correction in one collision
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‘ GEORG-AUGUST-UNIVERSITAT .
. @J GOTTINGEN Energy loss for heavy charge particles/2

* For heavy charged particles like proton, k, T, {4, .. where m;,cigent > Me

50 0 YT
. "T', ' | g . .
[ B ' . 1 Three distinctive regions:
| .‘\(Uf/dx o= 1-573 | ®* on Cu -

~200p  \ E/dx = 4L L 1. Steeply falling (kinematic factor) as
£ , Radiative effects 1/B? down to By = 3-4
T 10,0 become important 3 . . T .
W f , 3 * Minimum lonization Particle
% =nl : Approx Tinax
Z SO0 | dE /dx without § ; o (MIP) .
5 [=100% ' \ Minimum | __.- 2. Relativistic (modest) rise In(B?y?)
g | 1\ 3 : t e e . .. . .
@ gg poorrect. | NN _ ¥ oz D Rl - highly relativistic particles very
B Y g i similar in dE/dx

-0 f =587 "{ Complete dE/dx =2 3. Density effect and saturation (-0/2)

o lal el sl sl ooyl o S

0.1 10 , 10 100 1000 10000
By =p/Mc
Units: MeV g' cm? or MeV/(g * cm™)
= <dE/dx>;, ~ 1-2 MeV g!' cm?
By =34

Density of copper: p=9.94 g/cm3
= MIP looses ~ 13 MeV/cm in copper
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‘ GEORG-AUGUST-UNIVERSITAT .
@J GOTTINGEN Energy loss dependence on material

max

E ZZ [1 (2’”‘” W, )-2p 6(ﬁy)——

What is the dependency of the
<dE/dx> on the traversed material?

H, liquid

* For Z/A = 0.5 (majority of materials),
at the minimum of the ionization

- dE/dx MeV g~'cm?)
W
l

2; 'A = UFeftl T TTHS i (By z3)
_ > <dE/dx> yp = 1.4 MeV g1 cm?
o ) R R R
0.1 1.0 - 10 100 1000  1000C Examp|e:
By =p/Mc .
T R T M.I.P. traversing Iron
0.1 1.0 10 100 1000 : — !
Muon momentum (GeV/c) ¢ tthkneSS - 100 cm,
ol il il il « p=7.87 g/lcm3
" Pion momentum (GeV/c) dE = 1.4*100*7.87 = 1102 MeV = 1.1 GeV
1_l_l_l_LuJJJ_A_A_J_LmlLL_L_I_LAAuLA_A_LLLLLLl_A_I_LLJ.LU
0.1 1.0 10 100 1000 10000
Proton momentum (GeV/c) =» 1 GeV muons can travers 1 m of iron!
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. @J il  dE/dx for particle identification

« <dE/dx>:identical for particles with the same charge (z) vs By = p/mc,
..different vs momentum p

ALICE Experlment at CERN ATLAS Experlment at CERN

BT 3 i "10—""""""""'“ T g 10°
£ i v, - ' ALICE performance E 9F -~ ATLAS Prellm] ’ o =
% 5 . pp, Vs =13TeV 7 "o [ Good Pixels>=3 == J / R =
f B=02T > 8F = BFT%
% o F e
310 = T =
= i ﬁ 6 == 10°
= 6} 55| = JE
8 s} © 5:__ =
g - i
§ 4 = 10°
5 3§
5 2
hy e 2" 10

10" 1 10 15

Momentum (GeV/c)

O S 15 1050 05 115 2 25
p (GeV)

* The energy loss vs p, depends on the particle mass m

By measuring p (deflection in magnetic field) and dE/dx
=>» mass of the particle, i.e. particle ID (in certain energy regions)
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‘ GEORG-AUGUST-UNIVERSITAT
. @J GOTTINGEN Energy loss at small momentum / Range

|
* For By > 3 the energy loss is ~constant [ = I
* Energy loss increases 1/B2for By <3 % p¥ on Cu
. . . L - R i
=>» Particles deposit most of their Em" AT ot
energy at the end of their track 5 | [ Zeseq I
e ga I Radiative
Bragg peak o 1055 | ein
g: E’_] Mi 'm}lm
Important effect for cancer therapy! 5 [ Nt T
Tl ol
0.001 001 0:1 1 I 10 100
I Py
100 . - (RN ProtonTherapy ' ' 1 T 1
R X-Ray Therapy --eeeeeeeeeee 0.1 1 10 100 1 10
[MeV/c] [GeV/c]

75— Muon momentum

Range of particles (R)

50—

Dose (%)

Particle enters the matter and
looses energy until it comes to rest

T = |

dE

15 2 25 R(T) :/ [——] dE
0 dx

Depth (cm)

25
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GEORG-AUGUST-UNIVERSITAT
. @J GOTTINGEN Energy loss for electrons: Bremsstrahlung

* For electrons, Bethe-Bloch formula needs corrections since:
 Incident and target electron have same mass, QM indistinguishable

_<d_E.>  In(E)
dx lonization

« Additional effect becoming predominant for E > 10-30 MeV

Bremsstrahlung: photon emission
by the electron accelerated In
the Coulomb field of nucleus.

dE E
<E> @) ol (( @

« Energy loss proportional to 1/m?
= main relevance for electrons (or ultra-relativistic muons)

Bremsstrahlung radiation

e

Radiation

HASCO Summer School - July 2021 12



- [kl Total energy loss for electrons

« Specifically for the electron, we introduce a new quantity, X,

A
4aN 7 Z2r2 111 208

Material specific [g ° cm 2]

Xo =

_[4E\ _E _ X
—> <dx> x, —F EX=Reety)

X, = radiation length
“distance” after which
the initial energy E, is
reduced by a factor 7/e

(5 o (%) ® &)
dx Total dx lonization dx Brems

E E_. = critical energy

Brems = ionization -

10 | A i T T T . | i 1 1 I T T | l < dE > N < dE >
2 5 10 20 50 100 200 = i
Electron energy (MeV) dx lonization dx Brems

200 —————r—rrr] ————

Copper
. Xy =12.86 g cm-2
100 - E,=19.63 MeV

lllllllllllllllllllllLlJ 1

-
(e
il b

Rossi:

Ionization per X,
= electron energy

V=N
S

lllllll
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o

™™
$,
~N

al

dE/dx x Xy (MeV)
(o
o

Do
[=1
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C JGEORG-AUGUST-UNIVERSITAT
A GOTTINGEN

Summary for energy loss

g z | I I | I I
w B ' —
T n
- u” on Cu
o 100 | E
E B Bethe Radiative 1
- Anderson-
“g o Ziegler :
8_ . ?3 E Radiative E
20 10 L2 roach 1% Pl s o
B s il i o |  Radiative =
& - Minimum / losses ]
3 : ionization (a0 e md i
# [ Nuclear s W g
Z - | losses e : ; ~
= I ‘ - === Without &
2 1 I I I I I I
0.001 0.01 0.1 1 10 100 1000 104 105
Py
I I | | I I |
0.1 ] 10 100 1 10 100 ] 10 100
[MeV/c] [GeV/c] [TeV/c]

Muon momentum
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‘ GEORG-AUGUST-UNIVERSITAT .
. @J GOTTINGEN Fluctuation of energy loss

« Bethe-Bloch formula describes mean energy loss <dE/dx>
« Single energy loss is a statistical process, fluctuating event by event

- for very thin absorbers, Landau distribution gives a good description

« Asymmetric tail due to large single-collision energy transfers

between a massive highly relativistic particle

e
[

and a single electron - d-electron

distribution

e
n

. Average value # Most probable value (MPV)

0.l

— correction needed for thicker material

IIIIIIIIIIIIIIlIIII

« Vlavilov, Bichsel models. 0.05
(I
0 YAl NN N m—h
b1 5 Lo L5 20
M.P.V. E (arbitrary scale)

Average Value
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. @J e Multiple Scattering

 Incident particle can scatter in the Coulomb field of the atomic nucleus
 already described for the Bremsstrahlung case
 deflection will be more significant because of the factor Z!

l_x/zﬁ\ ; For many collisions (>20):
1 = ! A X statistical treatment
e lane y Y
ey, “Moliére theory”
$ 9plane
A

* Probability that a particle is defected by an angle after travelling a
distance x in the material: Gaussian distribution approximation with o:

13.6 MeV X X
\/ (62 — @plane _ ,/ 1+ 0.038In —

Material constant X : radiation length

oc Yx — use thin detectors
oc 1WX, — use light detectors

oc 1/Bp — serious problem at low momenta
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. @J comneen Cherenkov Radiation

Three type of electromagnetic interactions:

1. Excitation/lonization (of the atoms of the traversed material
2. Emission of Cherenkov light

3. Emission of Transition Radiation

 lonization is one way of energy loss, photons emission is also possible

« Velocity of the particle: v
« Velocity of light in a medium of refractive index n: ¢/n

 If particle travels with (v > c¢/n) or (8 > 1/n) ..EM shockwave creation

: I
=» real photons emitted! B e e

(¢))
Cosh = — = —
= K-v

. 8. 8. i
Energy loss by Cherenkov radiation very small w.r.t. ionization (< 1%)
Interesting application to measure B of the particle! = RICH detectors.
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[k u— Transition Radiation

Three type of electromagnetic interactions:

1. Excitation/lonization (of the atoms of the traversed material
2. Emission of Cherenkov light v

3. Emission of Transition Radiation

Relativistic particle (large y) crosses the boundary between two media
with different dielectric constants (¢4, €5,)
=>» probability ~1% to produced an X-ray photon

The number of photons are small so many transitions are needed
=» use a stack of radiation layers interleaved by active detector parts.

Intensity | ~y=E/m
« Used for identification of particle of momenta 1-100 GeV
* The photons are emitted at a small angle (6 ~ 1/y)

Emitted energy ~ (£4-€5)
 HEP: gases (&) and light plastics (&,),
=>» photon energies ~10-30 keV Shidited
« Choice of material with big difference but particle
photon should not be absorbed!
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C JGEORG-AUGUST—UNIVERSITAT
A GOTTINGEN

Interaction of photons
with matter
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. @J el Interaction of photons with matter/1

* Photon removed from an beam after one single interaction because of
total absorption or scattering

1 Ey 1

1) Photoelectric Effect

¥ +atom — atom™ +é~

2) Compton Scattering
e~

e N
I(x)=1,e", “=12f=l"f

Mean free path
A=1/u

Ey

v +nucleus — e e + nucleus
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. kit~ Interaction of photons with matter/2

» Photoelectric effect: E, S m,c?
- photo electron is release with E, = E, - I, with l,= electro-nucleus binding energy
- |, depends strongly on Z = the cross section o Z°
« Compton scattering: E, >> |,
- Quasi-free electron =» scattering of photon off an electron
» Pair production: for E, > 2 mc?
- interaction in the Coulomb field of atomic nucleus allows y — e* + e-

— similar process to Bremsstrahlung

- O i Faises above threshold, saturates at large E, (nuclear charge screening)

: 7 183 1
N a
Opair = 4ar.Z (gln 7173 54) 7 NA 1 yi
F 1O pair = ' > Jpair_ (9/7) ° XO
E A 9 A X,
07 4aN, Z2r2 ln%i
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. @J it Interaction of photons with matter/3

Photon Total Cross Sections

E\ l | | l | | | | | | \\ | T I | | I I I ]
2 No
.~ ) -
g . Carbon (Z = 6) ¥ Lead (Z = 82)
& p— : — .' ’i
| 1 m - \ 2 p_—
g2 ; Ope. R\
= [~ — . )
g 0‘ Photo effect - &
= | p-e. n .g
g E 1 MeV
~ 1kb — B
g ~ 1kb Par -
£ | £ . production
b -g u
2 -
.‘) = § e 1"‘
y J
Rayleigh /| | 1bf-
scatterning ,' \ ',' G Compton
Wi
10 mb A ) < 10 mb d ."' | | - :
10 eV lke\ 1 MeV " 1GeV 100 GeV 10 eV { 1keV 1 MeV 1 GeV 100 GeV
Photon Energy Photon Energy

Pair Production :
Compton scattering
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Hadronic Interactions

C JGEORG-AUGUST—UNIVERSITAT
A GOTTINGEN

[} I I 1 I I L} I L 1 I l-
» None of the above applies to neutrons ol croessocion Elstocross spsion
 can measure them indirectly: sk / '/”m"“'""
=5 B 1
. . . =
=> knocking off nuclei, measure charged object ¢ /
. . 8 adiative captur
« scattering with same mass partner (proton) ¢ s
(o]
= use organic material (significant H content) © et cross section Kottt | |7
1 0-5 B A(n,n)A* T b1
IFe-00 e 5 WO G
* p,n, T, Kat high energies L [ I
Incident Energy (MeV) +fission in heavy mat

« additional processes possible (inelastic collisions)
with creation of further hadrons that undergo further inelastic collisions..
* Nuclear interactions — new vy, n, p (+nuclear fragments)

* Avg. had. interaction length for inelastic absorption A, > X,

i
AA

=» See next talk about Calorimetry for more details

N(x) = N, exp
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C JGEORG-AUGUST—UNIVERSITAT
A GOTTINGEN

lonization detectors




‘ GEORG-AUGUST-UNIVERSITAT . .
. @J GOTTINGEN lonisation detectors concept

« Charged particles leave a trail of ions/excited atoms along their path:
Electron-lon pairs in gases and liquids, electron-hole pairs in solids.

 Deposited energy Eq,,, causes ionisation (average energy | needed)
=>» releasing a total n = E,,,/ I charge carriers

* Apply electric field to extract and read charge pulse
(charge drifting + induction)

1

 Typical media used: reldel el v
« (Gas: e-ion pairs, | ~few 10 eV ¢
« Semiconductor: e-hole pairs, | ~ few eV SR
S — >

« Bethe-Bloch signal dE/dx « density (p)
« (Gas:
too little charge released (q=80 e-/cm ) to have a good signal
- internal amplification needed (e.g., wire chamber)
* Semiconductors:
charge detectable, but competing with intrinsic charge carriers
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GEORG-AUGUST-UNIVERSITAT - . .
. @J GOTTINGEN Gaseous detectors: Field Configuration

For high electric fields (100 kV/cm), the electrons gain energy in excess
of the ionization energy - secondary ionization - electron avalanche!

i : i §\\\}\‘”/{/“% « To achieve high
L %///m\\\\\% g:,e\fé?)f held, small

multiwire single wire strips eleCtrOdeS needed
 Small read-out

MICROMEGA :
M segments (wires)
S » Specific
AN AN AN I\ 7AW perforated foils
holes parallel plate grooves
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Gas amplification factor:

lonization mode:
no amplification (gain=1).

Proportional mode:

multiplication, signal

proportional to original

lonization

- measurement of dE/dx
(gain ~ 104-10°).

Saturated mode:
strong photo-emission,
high gain, simple
electronics.

Geiger mode:
massive photo emission

- eventually limits the gas

gain due to continuous
discharge.

el! V1 ||
= '

o E,n~ 4 kVicm
&

[=2]

8

B Mesh pitch 60pm

‘E’ A T ket e e RS B
=

O

EV

21 ,

= _“ 'I".’ a

: \

g |

= | R %EE THH
S| IHEHHE HHARHH
g |I1lﬂ!!|!§ Hi A
£

<

Example:

-deow omls - -

LULLLLL T

l'}{!i '

»
LRl 13 1)

f
' :lll
it

Pixel pad

\
\
\
\
v

Perforated foil supported by pillars
Pixel electrodes beneath
—> amplification and read-out separated.

27
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‘ GEORG-AUGUST-UNIVERSITAT . = .
. @J GOTTINGEN Semiconductor : pn-junction

 |onization as in gas detectors

- Semiconductors = solid materials with crystalline structure (Si, Ge)

—> electron-hole pairs (instead of electron-ion)
« Usage of special materials “Extrinsic or doped semiconductors”:

- Majority of charge carriers provided by impurity atoms at lattice sites of the crystal
> n-t;xpe (p-type) materials with excess of e~ (holes)

(a) (b) ::6 A electrons

n p = Ve
T
Q © :
+ | e et
O+ttt * | 5 5 i
| ad ol el el
+ 4+ +
®ee 09450
.&+.+ ¢ A+ x _Ci_ &
I AY
\
electrons holes
donor ion acceptor ion n p

« pn-junction under reverse bias (High Voltage applied to electrodes):
« Extract electrons or holes present from doping (depletion region)
* Provides electric field needed for charge drifting
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‘ GEORG-AUGUST-UNIVERSITAT i}
. @J GOTTINGEN Segmented Semiconductors

« Segmenting pn-junctions into pads, strips and pixels
-> position sensitivity

Guardring Guardring

Pixel electrodes I Zwischen- Strip electrodes
stredlen A
Streffen

Detector volume
(substrate)

Backside electrodes

v Typical sizes:
00pm  g/8" « Strip or Pixel pitch = 50/250/500 pm
e Detector Thickness = 200-300 ym

« Enough to create a good signal
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. @J Gornann Pixel Detector Read-out
Hybrid technology:

1:1 connection sensor segments to the read-out cell
=> bump bonding technique

front end P—
electronics

under-bump metal -<— bump connection

sensor

particle track
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C JGEORG-AUGUST—UNIVERSITAT
A GOTTINGEN

Light-based Detectors:
) Scintillation &
Cerenkov Radiation




Scintillation

C JGEORG-AUGUST—UNIVERSITAT
A GOTTINGEN

lonisaton ___ __ ___ __ __ ___ __
threshold m-states Excitation from:
Singlet Triplet
S3 830 i Bethe'B|OCh
A .
(charged particles)
Spr S T,  Photo-electrons
S, Sy - (— detection of y)
SR 1 | * Neutrons knocking off
| | 13 ---------- O R ———
0.15eV g, _____| S N T protons
i S11-----‘-.----~- .{ (_p_s_) ..........
Sy Sig—> ty /"’@4
7 %‘f)}%":zz:zz Resulting in de-excitation
0 T = = scintillation light
g 2
3-4eV S 2 msf | || §
~400-300nm - 2 5
2 g g
S < yio Yo
03- - ] - - b o - -] -
SO O I S I 1 P LY LY
Sord b Ly ] A
Sg— Sgo Y Y
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C JGEORG-AUGUST—UNIVERSITAT
A GOTTINGEN

Light Readout: PMT and APD

insulation
conductive painting
(cathode potential)

glas bulb

scintillator light guide

(In-)organic material photo-cathode
—>scintillation light

housing (screens)

Light guide Photo multiplier tube (PMT)
- connecting scintillator to PMT -2 signal amplification before read out

hv n*
Alternative to PMT: F.._—..% .
Silicon pn-junction with )_ P T —p*
amplification (Avalanche P
Photo Diode, APD :
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GEORG-AUGUST- ERSITAT . .
. @J v Cherenkov radiation: RICH detectors

* In a Cherenkov detector, the produced photons are measured.

* Principle: project Cherenkov cone into a ring, we measure its radius
=» emission angle 6, o w 1
=> [3 of the particle =

 If particle momentum p provided by other detectors = particle ID!

= kv _ np

« Components: radiator (+ mirror) + photon detector

-~

aerogel n < n, photon detectors
Cherenkov photons
— charged particle
Ea
-
1.5+1.5cm 20cm
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C JGEORG-AUGUST—UNIVERSITAT
A GOTTINGEN

Tracking detectors




GEORG-AUGUST-UNIVERSITAT
. @J GOTTINGEN What to expect from trackers?

Measure trajectory of charged particles

 Measure several points along the track and
fit curves to the points (helicoidal
trajectories with magnetic field)

« Use the track curvature in magnetic field to
determine the particle momentum and
charge

« Extrapolate tracks to the point of origin

perigee:

« Determine positions of primary vertices
and identify collision vertex

 Find secondary vertices from decay of
long-lived particles (lifetime tagging)

p=(dy,Az,0,¢,0/P)
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. @J comnGen Tracking Concepts

Full silicon tracker Gaseous + Silicon tracker
(CMS) (ATLAS)

Si strip detector

particle track
with hits

particle track
with hits

1st vertex-layer

2nd vertex-layer
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GEORG-AUGUST-UNIVERSITAT

. @J GOTTINGEN Single Point Resolution (1)

Hit

Simple case:

only single hit segment (binary readout) JAWA A JANAN
« Segment width 2> p

« Default hit position:
centre of segment

—>

p
* Reconstruction error (“residual”)\ BX=XeXinue
varies with true hit position. o~ ol
Xtrue
« Flat hit probability: residual P2t
distribution is a box diagram —  dN/dAX

=

AX




(@h J GEORG-AUGUST-UNIVERSITAT ) _ _
AP GOTTINGEN Single Point Resolution (2)

* Reconstruction error
—> std. deviation defined by probability distribution

 Normalised box distribution centred around 0 with width p:

\/ 1 pf/z 2 g p =» single point resolution oy~ 14 ym
O\ = RS ' for a pixel/strip pitch p = 50 pm
p —pl2 \/E P PP P H

* Worst possible resolution with pure binary readout
« Value improves if several segments are recorded per each track:

=>» weighting with pulse height information
dN/dAx

1 B

A\X




C JGEORG-AUGUST—UNIVERSITAT
A GOTTINGEN

« Simplest method :

Pulse Height Weighting

linear interpolation, using the charge R = .
deposited in the edge pixels of the : A Ty
cluster: E 5
Q= qlast : : t
qfirst i qlaSt . : T genter‘_ofgra?wt‘l
wire Vi\lggijle ofifrgf)ln-ESO\E‘*:ILrT1
» Hit position: reconstructed from e
geometrical centre of the cluster E ol ¢ residuals vs charge balancing
and Q S E Cluster size =2
$0.005 + e -
1 ‘
X=X ~+ A Q S— - ATLAS Preliminary
centre X x 2 -0.005:— SlopEs 3 B =
0,01l et -
. 0 01 02 03 04 05 06 07 08 09 q1
« AXx calibrated from data

(plotting residual vs. charge sharing)
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Drift detectors

Resolution can be < p/12 if using drift time: ATLAS MDT
* Precise measurement of arrival inf. mom.
track
time of charge signal EriagadsaiTianyiss Sraana ey
 Known electric field x RIAGIEE Mr‘?‘f PO BO
. . . ”“'II'I """""" OO )
— drift velocity v = u E is known - GRS -Moé‘&lﬁu..,:&;&%r:éfﬁ.
— determine distance of ionisation v S o,,. ~10 mn
location from electrode Tm ' *ﬁiili“ KL o
- Precision driven by Electronics 8 ¢ #%9515%% Gy ~0,1 mm
(timing resolution) and smearing e
due to Diffusion , ' -
100} -
5= dyn o 2 1 JKTP _ oo p :
= SVA = £ _ Diffusion |
3 3ym o,P A €or
- 40*\“““:‘;’7‘ ‘‘‘‘‘‘‘‘ : -
. . 20t /\f’ 1
Diffusion depends on the gas b Nrweswin
pressure P and temperature T b R W




. (G St From Hits to a Track

« Simple example: straight line fit (a real track is more complex)

« Measured positions y; with single point resolution as before x?2
minimisation withy, =a + b x,, :

> (ya—a—bx,)’
Ja 4 U
=2 2

 Errors on a, b from covariance matrix o

1 0 b= tgb=-ctgh

n

A
« Similar approach for Q/

real tracks allows S ¢/—¢/
error calculation on .y & ¢ '
track parameters

Yo Yn y\

>
20 2 =
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. Q GOTTINGEN Momentum determination/resolution

Momentum determination of charged particles can be performed by
measuring the track bending in a magnetic field a<o

> pr=03°‘B°*R = )
component transverse to magnetic field lines ~

* Determine curvature from fit to N hit points,
characterize by the sagitta s

What about the p;resolution?

» For large and equidistant N with
equal errors Oyt ON spatial hit position:

Error calculation by Gluckstern: Ot el P10 poine | 720
approximate curved track by parabolic fit pr 0.3B 2\ N+4
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Momentum Resolution/Multiple Scattering

¢ pT=O.3°B' R
=0.3 B+ L/(20)

.~ seadl) * 0g x 1/p7 from MS translates via
e % error propagation into g,

y/ (6%(x)) = Of® oo ey \/7(1+0038|n—)

Bpc

MS
GMS S O’ 3 BL G G pT s = 2 7'2 MeV » Material constant X: radiation length
I B - Rt
* Zu pr 03ByLX, P

e o< 1/Bp — serious problem at low momenta

&

oPJ)/P:

Added in quadrature to intrinsic resolution:

total error|

- Multiple Scattering dominates at low p;
(constant term, independent of p;)

o(PJ/P: =

-> Intrinsic resolution dominates at high p;
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@ e Vertex reconstruction

First Run-2 Collisions With a 4-Layer Pixel Detector

ICALAY Y TSR 77T |
R N l

\
+

AR =
‘ » \k\“ﬁ (IRVV) ’ | S ‘41,
SNt W
ORI NN\ g
R s\ \\\\\ \\\5\\\\ // /*///,/4,» EXPERIMENT

NN NN 27
N W’ "// S ///71
Wy

Run Number: 266904, Event Number: 25884805

QR
A \\ / e
Sa\\Wlyy ~——
S\l 77 = '

\
' N

Date: 2015-06-03 13:41:54 CEST

|
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)
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' /Z!Mh'/_lil‘!ﬂ 7
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i
/)
(
/ 7 > |
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! ‘\L\\f\\}\\)\;\(\\ -\: |
' (_'_W' =i ‘%,”‘\\‘\\?&\ ! AN RO N RS
A AN NSRS VRN
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« Tracks from secondary
vertex have significant
impact parameter d, with padiens
respect to primary vertex.

Lifetime Tagging

A jet

y

secondary vertex

I/ -7-~b hadron
primary impact parameter d
N vertex g

AN >

R X

T

Example of a fully
reconstructed event from
LHCb with primary,
secondary and tertiary
vertex

I

LHCb Preliminary

EVT: 49700980
RUN: 70684

%]

IIlllllllll\lllllll'lllllll

~%
IlI|IlII1I|III|III|IIIlII||lI¥|l!l
D 2 4 9) 8 10 12 14 16
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. @J COTNGEN Vertex Resolution
* \Very simple case:

Two tracking layers at radii r; and r,, extrapolationtor =0

* if uncertainty in layer 1 only:
r,o04q

Gd°:|r r
% g

Similarly for layer 2 only:

r,o
Gd: | S
0
r,=—r,
I, [
. T . 2 2+ 2
* Adding the two uncertainties in quadrature: o’ _ 19 wF9,
d,— 2
ry—ry)
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Vertex: Multiple Scattering

. (e = 400
 Additional contribution due i 350; | — ALIGE, lnl <04
to multiple scattering tobe added %% |\ | wrisgous, <
. 5 - R
© = W U Rt LHCb, 2<n <5
. - 200 E
with gg as for momentum TEA E
+ Resulting in 100 E
50/ -
DD o SO SO O I IR RN D O e O
_\/r201+r1 9y EONSE, X 100-1
g = O 1 1({
do rz_rl p XO pT GeV]

13.6 MeV b% X
62 — @plane _ — (1+0.038In —
\/ (62(x)) s e z‘/xo( . n < )

0

« Material constant X radiation length

e oc Yx — use thin detectors
o o< 1NX, — use light detectors

e oc 1/Bp — serious problem at low momenta
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. Gl S ™ Detector Alignment

Track fit assumes a known position of detector elements
« However systematic shifts due to distortion in mechanical structures
(twist, sagging, bending, ...)

* Impact on momentum and vertex reconstruction

« Correct for “broken” tracks — alignment

Initial assumption

Database: All modules perfect | | Database: Modules on actual positions

" T i P ol T oy T L o Y [ o Vo i T O ) S W e e | W v |
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. @J ggﬁlchiggsusnumvmsnm Tracker Design

o rlo? rfai@const, o o | Pro, [ 720 o 27-2MeV
o, p pr  03BL)(N)4 OSB(ZL}X
Tracker design: \/

* Vertex resolution: outer radius (r,) as large as possible, inner radius
(r,) as small as possible with best point resolution a;,.

 Momentum resolution: many points (N) and long lever arm (L),
magnetic field (B) as strong as possible.

=> For both concepts we need as little material as possible (X,

 Reducing Inner radius:
Beam pipe presence, track density, radiation damage.

* Increasing Outer radius:
Overall size increase = Cost increase.
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CERN and the LHC

* Proton (or Pb ions) collider
« 27 km circumference
« 1232 superconducting dipoles
B Design parameters:
i cEcm. =14 TeV
| * luminosity 1034 cm-2 s
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. Gl e Silicon Trackers at LHC
Fast, good resolution, low dead time, radiation hard.

« ~1000 tracks every 25 ns =» 10" tracks per second !

» High radiation dose 10" n,,/ cm? in 10 Yrs @LHC
=» 600 kGy (60 Mrad) from ionization of MIPs in 250 um bulk silicon

O(50)

0(500)

F——— .
’ \ AN
Y ", s o
"X AR
B 0 7 rl/ Ly
* e £l WA e
- .
: -
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@J Er NN For every taste...

i\{;\ . \\\Q\ " ‘

\“ \\V‘

.The‘LH‘Cb VELO stnp\\

5

/
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- [kl The ATLAS detector @ LHC

Very large, general purpose magnetic detector for the LHC

44m

25m

—

Tile calorimeters

: LAr hadronic end-cap and
F ‘ forward calorimeters
Pixel detector

LAr electromagnetic calorimeters

Toroid magnets

Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor fracker Jjust 7000 tons...
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. (G St The ATLAS Tracker

« Tracking volume is about 7m long and has a radius of 1.2 m.

« Sitting inside a superconducting solenoid field of 2T.

Outermost uses gas-filled 4mm straws:
sl « contains 420K electronics channels
 transition radiation detector gives

particle ID.

Y- Ep <

Intermediate is a large silicon strip

tracker:

* 4 barrel layers and 9 disk layers
contain 61 m2 of silicon with 6.2 M

channels.

L R =554mm
( R=514mm

R =443mm
SCT

R=371mm

\ R =299mm . - .
Innermost is a silicon pixel tracker:

* 4 barrel layers and 3 disk layers
contain 1.92 m? of silicon and
92 M channels.

R=122.5mm
Pixels { R =88.5mm
R =50.5mm
R =33.25mm

R=0mm
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- [€ki=wmaml The ATLAS Pixel Detector
3 Layers initially (beginning of 2010)

3 precision measurements that determines the impact parameter resolution and
the ability of the Inner Detector to find short lived particles such as B-Hadrons.

* 1744 modules arranged into 3 barrel and 3 end-cap layers with acceptance |n|< 2.5
=>» each module is 62.4 mm long and 21.4 mm wide.

« The modules are overlapped on the support structure to give hermetic coverage.

» The thickness of each layer (250 pm) is expected to be about 2.5% X, .

EndCaps
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 Luminosity (particle rate) increase

= Front-End electronics expects inefficiency at high
particle rate (L ~ 2 x 1034 cm=2s71).

Insertable B-Layer
(IBL)

Radiation damage

= Sensor/electronics degradation impacts the detector
efficiency.

Compensate inefficiency in the Pixel

= The Pixel retector cannot be repaired in case of
hardware failure:

—> high impact on many physics channels.

Improvement of the tracking/vertexing/b-tagging
» Higher resolution & proximity to IP enhance pile-up separation

* low material budget (1.5% Xo)
Technology step towards the HL-LHC
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@ ggi??r\]/(\;LSSUST-UNIVERSITAT The IBL Detector

7

”l/;l
/
—

’

d

: . , - 4
‘ :’;—’. ) > ‘/\‘

:\’ A v .
e - .
s Q ! 7 : / -
‘?“ / "
. _'/_d— / ’ = - -
|

Insertable B-Layer (IBL) was added at the beginning of RUN 2 (2014)
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The building block: Pixel module

* 16 Front-ends chips bump-bonded to
sensor

ey ATLAS Pixel Module

readout :
electronics

bump-bond decoupling

capacitors

sensor

sensor

Sensor:

250 pm thick n-in-n Si planar sensor:

50 x 400 typical um pixel size
Bias voltage: 150 -600 V

Resolution: ~10 ym in R and ~100 uymin z

5 b bond
™T sensor ump bonds dime't‘\sionf: ~2 % 6.3 cm?
weight: ~ 2.2 g
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. @J GOTTINGEN Pixel performance after ~10 years

Signal of a high energy particle g
MIP ~ 19500 e in 250 pym silicon rradiation |

= however, < 10000 e- after irradiation

Signal
AFEET » ----------------
Irradiation

3500 e-
Threshold [ T— € P—

Discriminator thresholds = 3500 e-
NOISG ~200 e Pedestal

Before Irradiation After Irradiation

99.8% data taking efficiency

SRR REORAREERANBERT ] [ A RN R 105
FATLAS Prelimj'. & 7 -

= Good Pixels>=3 -= 1% =
i = 10°

~ 96% of detector operational

10°

dE/dx (MeV g cm?)

~10 um x 100 ym resolution -

10

12% dE/dx resolution

2 -15 -1-050 05 1 15 25
p (GeV)

1
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. @J s  Pixel (IBL) performance in Run 2

* Impact parameter resolution < |BL spatial resolution
improvements after IBL ~ 10 ym for the
insertion (2015 data) transverse R-¢ plane

Inner radius reduction

T 400 ————— - =
=1 —  ATLAS Preliminary | E E EEEERRFE LR T LEEN RN
= 390 po<n<o02 © Data2012,\s =8 TeV — £1900 A7L4S Preliminary ® Data2015 |
o 3005 e Data2015,\s =13 TeV 3 S - — Simulation
© = = S el N
250 . — Multiple = %’) S0
200 scattering . = = [
1505 Intrinsic resolution, 3 600} ~
Shcai Detector alignment 3
- —— \ . 400+ -
- -_—O— _ l-
50¢ — s _
= | . o
~ (1’ | 200} .
= — I
o 0.8F _._—o——‘— _
% 06:.——0—_.__._ ] O |
S 4x10" 1 2 3 4 567890 20 -0.1  -0.05 0 005 0.1
(aV}
p, [GeV] IBL A -6 [mm]
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AP GOTTINGEN Radiation damage in Silicon

« Charge carriers will drift toward the collecting electrode due to
electric field, which is deformed by radiation damage.

« Their path will be deflected by magnetic field (Lorentz angle) and by
diffusion.

Q
=
electronics chip Radiation damage introduces
defects into the sensor bulk:

bump

e — Increases the leakage current
iode- &
implant (n+) th’?
(<)
y O depleti . “ : ”
J Y e — increases the “depletion voltage
S
\ | (X Bield
IR o — decreases the collected charge

bias voltage (p*) electrode

— deforms the E-field (double-peak)
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. L  Effect of radiation on dE/dx

« Decreasing charge collection efficiency
(trapping of charge carrier in the sensor bulk defects)

= measured dE/dx decreases. ¢ i 0 T e

= Tors—=5  ATLAS Preliminary 1 <cluster size (b)> ]

.% g Data 2016, Vs = 13 TeV —}— <cluster size (z)> 7]

& - B-layer .

« HV (or bias Voltage) can have ¢ [T -

. . = N colgff i & Posse Haggte ra— ]

an influence if detector not fully g F| ™" N Ly

depleted. 2 EL ]

=, _

-g 1'2:4 sty Ay g e ."h--".‘"."4.,‘"‘.“-"*""'3-b"'--"'E

% 1_—7! Ay trp'---.. .--5--5’{4‘. \n.,-t‘......r____*"-__i_h_ - _'.:

« Front end electronics threshold * 5

increase show up as steps in 08— thr. 3.5ke 5 =

I i ' 3|5""4Io"“415””5|0'"'5|5"”6|0””615""7lo”

dE/dX Slnce hItS beIOW Delivered luminosity [fb'1]
threshold do not get recorded

anymore
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. @J SEORGAUGUSEUNERSITAT Fighting the radiation damage

Charge collection ratio * Most Probable Value of the
between irradiated and Landau distribution of the
pre-irradiation sensor as a Time Over Threshold (TOT)
function of integrated =» equivalent of charge!
luminosity (radiation) |
=> clear decrease of the « Bias voltage scans to monitor
charge collected! the “depletion voltage” evolution
> T T T T T ! T T T T T — 10— =
e 4. End2016 I - E
S E""""’"""--‘s_, - End 2017 E E 85— e Standalone Simulation: $=6 10 n,/cm? (end 2017) _g
ch 09_— j? DRSS ﬁ; = § + Standalone Simulation: $=8.7 10" n.,/cm® (end 2018) §
S [ ATLAS Prelminary™. ] ’E End 2017 E
o r | - S E
S _f « pawsov T Y aE E
5 - : B::: l,?gx E 3f- End 2018ATLAS 3
06 o StandaloneS|muIat|on 80V : + T oFE- Preliminary =
PL ¢ = Standalone Simulation 150:V P = = -
E | Q Standalone Simulati;on 350§V EEAS E 15_ | I |BL p|anar modu|es _E
0.5 —————— — 200 400 600 800 1000

10 10°

Integrated Luminosity [fb™] Bias Voltage [V]
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. @J gg(;f;lcr\;gtésusnumvmsnm Re fe rences

General particle detection books:

K. Kleinknecht: Detectors for Particle Radiation, Cambridge University Press
W. R. Leo: Techniques for Nuclear and Particle Physics Experiments, Springer
G. F. Knoll: Radiation Detection and Measurement, Wiley.

Semiconductor detectors books:

H. Spieler, Semiconductor Detector Systems, Oxford Science Publications
G. Lutz, Semiconductor Radiation Detectors, Springer Verlag

L. Rossi, P. Fischer, T. Rohe, N. Wermes, Pixel Detectors, Springer Verlag

Detector lectures:

W. Riegler, Fundamentals of Patrticle Detectors and Developments in Detector
Technologies for Future Experiments, CERN.

D. Pitzl, Detector for Particle Physics, DESY.

E. Garutti, The Physics of Particle Detector, DESY.
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Back-up




Miscellanea

C JGEORG-AUGUST—UNIVERSITAT
A GOTTINGEN

Particles are characterized by eV=1.6-10"J
c = 299 792 458 m/s
Mass [Unit: eV/c2or eV] e =1.602176487(40)-107° C
Momentum [Unit: eV/c or eV]
Energy [Unit: eV]
Charge [Unit: €]
[+ Spin, Lifetime ...]
Particle Identification via
Relativistic kinematics: measurement of
2 =22 2 2 4 €.9. (Es 6! Q) or (63 B! Q)
E“=Dp% " +m-c E.m. Q..
3 v 1
— ’7 — -
s il = 32
2 2 . = - pc
E = m~vye® = me® + Exin P = myfc B =




. @J ggﬁ&ggsusnumvmsnm Charge sign

« Sign of charge is defined by the sign of 1/R=k :
1 1
5 ) — ]
Q=+ z -0 Q z < 0
A A

i N\

> >

* Precision on k from Gluckstern:

G = O‘point 720
k™ 2
b N+4

« Requiring 30 identification — upper lim. in p:

1 4. _3%om [ 720 03BL /N+
R




. kit~ Consideration for Pixel detectors

Requirements

good Signal/Noise
um space resolution
~ns time resolution 4

e
bias lines g
e

‘n’ type bulk

e >1O MHZ / mm2 rate Capability \ +electrons

* radiation hard to 50 Mrad SN T
+ radiation length per layer < 0.2% X, Vam——auy o ** “
Adva ntag es isolation implants

Provides space-point information

Small pixel area = low occupancy/noise
Small pixel volume = low leakage

n+-on n for the LHC =>» e- faster collection time

Disadvantages: * 'D' _D_
Large number of readout channels
Large bandwidth Sensor FE chip
Large power consumption Chip to chip

bump bonding

Bump bonding is costl
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CERN facilities.. not just LHC

CMS

LHC

North Area

SPS

-

ATLAS

HiRadMat
E I

AD
1999(182 )
2 BOOSTER

@ SRR  , 1soLDI
W - 54 East Area

P— : I
PS

n-lol g
2001 | A /. 1959 (628 m) .
X LINAC 2 4 | wi
” . LEIR
LINAC 3
Sedin 2005 (78 m)
b ion P neutrons P p (antiproton) p electron - - /antiproton conversion
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- [©=E==wl Filling LHC on the underground

LHC - B CERN

“==" ATLAS
o Point 1

E540 - V10/09/97
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Injection, Acceleration, Collision

450 GeV

V/\W------ |
1 N N B N D D N N D S . .

/]

\

I

N
W

Injection

= Field in main magnets

—— = Beam 1 intensity (current)
—— = Beam 2 intensity (current)

Ramp )i<Squ§eze | Stable beams for physics

Adjust

< \./

> < Dump >
] I &

Ramp down

The LHC is built to collide protons at 7 TeV per
beam, which is 14 TeV centre of Mass

In 2012 it ran at 4 TeV per beam, 8 TeV c.o.m.

In 2015 it ran at 6.5 TeV per beam, 13 TeV c.o.m
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@J ggﬁlcr\;gtésusrurulvmsnm LHC Timeline

High-Luminosity
territory...

LHC

LS EYETS 14 TeV I 14 TeV

injector upgrade 5t07x
splice consolidation cryo Point 4 crvolimit - nominal
7 TeV 8 TeV button collimators DS collimation intygraction . HL LH? luminosity
— R2E project l;g—_ll"é(ﬁ T figg,) regions installation =
ivil Eng. P1-
0 0 0 014 0 016 0 018 019 020 0 0 0 024 0 026 0
radiation
2 x nominal Iumino(jsiyage experiment
experiment experiment upgrade

zg:\/:inal begm pipes nominal luminosity | P phase fg — — upgrade phase 2
luminosity |

o

integrated
luminosity
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The IBL idea in a nutshell

* add a single detector layer built around a new thinner [
Beryllium beam-pipe (radius 29 mm = 25 mm). N

 closer to interaction point (5.05 — 3.27 cm)
« smaller pixel size (50 x 400 — 50 x 250 ym?)

« IBL + beam pipe and structures : < 2% X,

The IBL layout

» 14 staves in the phi coordinate

Actual B-Layer —— ~

« 32 front-end chips along the eta (z) coordinate

* mixed configuration of planar ( 75%) and 3D (25%)
sensors technologies along the staves.

« ~12 million pixels in total!

Side A 78 Side C

i fe i
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