HASCO Summer School 2021

Flavour Physics: Precision Tests and Anomalies

Johannes Albrecht 22. Juli 2021

technische universität dortmund

Discoveries and precision measurements

What was the last discovery of a fuindamental particle / force that was not hinted at indirectly?

22.7.2021

Quizz

Discoveries and precision measurements

What was the last discovery of a fuindamental particle / force that was not hinted at indirectly?

Figure 2: Distribution of fractional losses in 1 cm of platinum.

Expected and unexpected discoveries

Source: The Economist

• High energy:

"real" new particles can be produced and discovered via their decays

- Discovery of the Higgs boson at the LHC \rightarrow completion of the SM
- Tested scale : <10TeV</p>
- High precision:
 "virtual" new particles can be seen in quantum loops
 - Higher mass scale reachable (up to ~100TeV)

Direct and indirect searches are both needed, both equally important, and complement each other

Contribution of New Physics as correction to the Standard Model

Standard Model

New Physics

What is the scale of λ_{NP} ? What is its coupling C_{NP} ?

GIM Mechanism

Observed branching ratio $K^0 \rightarrow \mu\mu$

$$\frac{BR(K_L \to \mu^+ \mu^-)}{BR(K_L \to all)} = (7.2 \pm 0.5) \cdot 10^{-9}$$

In contradiction with theoretical expectation in the 3-Quark Model

Glashow, Iliopolus, Maiani (1970):

Prediction of a 2nd up-type quark, additional Feynman graph cancels the "u box graph".

 $M \sim \sin \theta_c \cos \theta_c$

 $M \sim -\sin \theta_c \cos \theta_c$

22.7.2021

 Higgs knowledge 2012: Electroweak precision measurements at Z-pole and direct searches at LEP, Tevatron & LHC

$$M_{\rm H} < 152 \; {\rm GeV} \quad (95\% {\rm C.L.})$$

 $M_{\rm H} = 94^{+29}_{-24} \, {\rm GeV}$

The way to the Higgs boson

What do we learn – process to discovery

- GIM: anomaly seen in data (too low $K^0 \rightarrow \mu^+ \mu^-$ rate)
 - \rightarrow anomaly interpreted as "heavy new physics"
 - \rightarrow charm quark mass constrained to 1.5-2GeV
 - \rightarrow direct searches confirm predicted charm quark (1974, m_c~1.28GeV)
- Top: missing quark predicted by theory (CKM)
 → precision tests at DESY + LEP constrain mass m_t = 178±20 GeV
 → discovery at Fermilab 1995: m_t = 180±20 GeV
- Higgs postulated to explain fermion masses, prevent W scattering
 → precision measurements at LEP m_H = 94 ⁺²⁹₋₂₅

 → discovery at CERN (ATLAS, CMS) 2012: m_H = 125 ± 0.6
- Anomalies in data tend to show up first
 → with model assumptions theory predicts new physics / particles
 → these new particles need to be discovered to confirm model

Part 2: Heavy quark flavour physics

Flavour at electron and proton colliders

- Defined initial state:
 - Low trigger bias
 - Full event reconstruction, low multiplicity
 - Allows selection of inclusive and invisible decays
 - Experimentally: $e^- \cong \mu^-$
- Excellent for decays with difficult signatures
 - $\quad B {\rightarrow} \ \tau^{*} \tau^{\text{-}}, \ B^{\text{-}} {\rightarrow} \ \tau^{\text{-}} \nu, \ B {\rightarrow} K^{*} \nu \nu \ , \ ..$
 - τ^- decays (LFV)

- Complex hadronic environment
- Very big bb (and cc, τ⁺τ⁻)
 production rate
 - Specialized on (very) rare and clean final states
 → then cleaner than e⁺e⁻
 - Leading for decays with muons $B \rightarrow \mu^{+}\mu^{-}, B \rightarrow K^{*}\mu^{+}\mu^{-}, B_{s} \rightarrow J/\psi\phi$
- Trigger and reconstruction are significant challenges, specially for ATLAS / CMS

- Status of indirect searches
 - Electroweak precision observables
 - \rightarrow a lot to learn in Higgs couplings, consistency of the SM

– Flavour

 This talk focuses on flavour physics: Search for new heavy particles in measurements of quantum effects

• Review of current flavour data:

Where do we see inconsistencies between Standard Model prediction and measurement (=anomalies) ? Where not?

Outline of this talk: Search for anomalies

- 1. CP violation and CKM precision measurements
- 2. Charm physics discovery of CPV in charm
- 3. Rare decays an intruiging pattern of anomalies

 V_{CKM} describes the rotation between weak (d', s', b') and mass eigenstates (d, s, b)

Couplings of the charged current:

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

Complex phases:

 V_{us}

 $-|V_{ts}|e^{i\beta_s}$

 V_{cs}

Magnitude:

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} = \begin{pmatrix} 0.97428 & 0.2253 & 0.00347 \\ 0.2252 & 0.97345 & 0.0410 \\ 0.00862 & 0.0403 & 0.999152 \end{pmatrix} \begin{pmatrix} |V_{ud}| \\ -|V_{cd}| \\ |V_{td}|e^{-i\beta} \end{pmatrix}$$

- CKM matrix is complex and unitary
- Four independent parameters

- Fundamental constants of nature that must be measured
- Reflects hierarchy of quark transitions

Why the ranking? We don't know (yet)!

If you figure this out, you will win the nobel prize

 $\lambda = sin(\theta_c) = 0.23$

Deriving the triangle interpretation

Starting point: the 9 unitarity constraints on the CKM matrix

$$V^{+}V = \begin{pmatrix} V^{*}_{ud} & V^{*}_{cd} & V^{*}_{td} \\ V^{*}_{us} & V^{*}_{cs} & V^{*}_{ts} \\ V^{*}_{ub} & V^{*}_{cb} & V^{*}_{tb} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Pick (arbitrarily) orthogonality condition with (i j) = (3,1)

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

Visualizing the unitarity constraint

• Divide all sides by length of base

• Constructed a triangle with apex (ρ , η)

Unitarity triangles

CKM matrix is unitary:

All 6 triangles have the same area, a measure of CPV in the SM

Summary of CKM measurements

sin 2β

Summary of CKM measurements

sin 2β

Adding many complimentary measurements

22.7.2021

Tree vs loop

Tree Processes only

SM dominant → no new effects expected Loop processes only

New Physics is expected to appear in loops

Tree vs loop

Apex known with 10-20%, aim at <1%

Outline of this talk: Search for anomalies

- CP violation and CKM precision measurements
- Charm physics discovery of CPV in charm
- Rare decays an intruiging pattern of anomalies

tul

History of CP violation

A. Carbone, CERN seminar, March 19

- Charm mesons D⁰ = (cū) only first two generations
 → in Standard Model no CP violation in lowest order
- CP violation in charm sector (was) not observed
 - Only way to test CP violation in up-type mesons
 - complementary to K and B mesons
- LHCb has recorded huge charm samples, eg. 1billion $D^0 \rightarrow K^+ \pi^-$
- Recent: Search for direct CP violation with $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ events
 - SM expectation small: $O(10^{-3} 10^{-4})$
 - − LHCb measurement with full dataset \rightarrow ~100M signal events

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)} \quad \text{with } f = K^- K^+ \text{ and } f = \pi^- \pi^+$$

• Need to determine the initial flavour of the D0 / D0bar = Tagging

Reconstructed charm peaks

Observable

- Difficult to control to the level of 10⁻³-10⁻⁴
- ΔA_{CP} is a robust combination of two asymmetries:

$$\Delta A_{CP} \equiv A_{CP}(D^0 \to K^- K^+) - A_{CP}(D^0 \to \pi^- \pi^+)$$

• Recent Run 2 analysis measures:

$$\Delta A_{CP}^{\pi-\text{tagged}} = [-18.2 \pm 3.2 \,(\text{stat.}) \pm 0.9 \,(\text{syst.})] \times 10^{-4}$$
$$\Delta A_{CP}^{\mu-\text{tagged}} = [-9 \pm 8 \,(\text{stat.}) \pm 5 \,(\text{syst.})] \times 10^{-4}$$

Compatible with previous LHCb results and WA

• Combination with LHCb Run 1:

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

CP violation in charm observed at 5.3σ

Discovery of CPV in charm – Anomaly ??

• SM prediction broadly compatible: 10⁻³–10⁻⁴

Golden et. al., PLB 222 (1989) 501 Buccella et al., PRD 51 (1995) 3478 Bianco et al., Riv. Nuovo Cim . 26N7 (2003) 1 Grossman et al, PRD 75 (2007) 036008 Artuso et al., AR Nucl. Part. Sci. 58 (2008) 249 Khodjamirian et al., PLB 774 (2017) 235 Pirtskhalava et al. , PLB 712 (2012) 81 Cheng et al., PRD 85 (2012) 034036 Feldmann et al., JHEP 06 (2012) 007 Li et al., PRD 86 (2012) 036012 Franco et al., JHEP 05 (2012) 140 Brod et al., JHEP 10 (2012) 161 Atwood et al., PTEP 2013 (2013) 093B05 Hiller et al., PRD 87 (2013) 014024 Grossman et al., JHEP 04 (2013) 067 Müller et al., PRL 115 (2015) 251802 Buccella et al., arXiv:1902.05564 (2019)

 But no agreement amongst different SM predictions
 → More theoretical work needed to understand if this is anomalous or SM like ..

Outline of this talk: Search for anomalies

- CP violation and CKM precision measurements
- Charm physics discovery of CPV in charm
- Rare decays an intruiging pattern of anomalies

tυ

$b \rightarrow s \ \mu^+\mu^-$ base diagram

Purely leptonic

– "add nothing"

- Semileptonic
 - add d quark as spectator $\rightarrow B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - add s quark as spectator $\rightarrow B_s \rightarrow \phi \mu^+ \mu^-$
 - add u quark as spectator $\rightarrow B^+ \rightarrow K^+ \mu^+ \mu^-$
- Ratios:
 - Compare muons to electrons

34/55 Heb

Golden channel: $B_{s,d} \rightarrow \mu^+ \mu^-$

Theory prediction: Standard Model

decay	SM		
$B_s \rightarrow \mu^+ \mu^-$	3.5±0.3 x 10 ⁻⁹		
$B^0 \rightarrow \mu^+ \mu^-$	1.1±0.1 x 10 ⁻¹⁰		

SM: Buras, Isidori et al: EPJC72(2012) 2172 Mixing effects: Fleischer et al, PRL109(2012)041801

Left handed couplings \rightarrow helicity suppressed

Discovery channel for New Phenomena

→ Very sensitive to an extended scalar sector (e.g. extended Higgs sectors, SUSY, etc.)

Up to date measurement

$$\mathscr{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10} \text{ at } 95 \% \text{ CL}$$

First order: No sign of large New Physics effect! Also very competitive results from ATLAS & CMS \rightarrow combine

$B \rightarrow \mu^+\mu^-$: Combination from LHC

ATLAS:1812.03017CMS:PRL111(2013)101804LHCb:PRL118(2017)191801

37/55

LНСЬ ГНСР

Combining all three LHC experiments

$$BR(B_{S} \rightarrow \mu^{+}\mu^{-}) = (2.71 \pm 0.4) \times 10^{-9}$$
 ~2 σ from SN

D. Straub, Moriond EW 2019 & 1903.10434 & DPG 2019

$b \rightarrow s \ \mu^+\mu^-$ base diagram

- Purely leptonic
 - "add nothing"

Semileptonic

- add d quark as spectator $\rightarrow B^0 \rightarrow K^{*0} \mu^+ \mu^-$
- add s quark as spectator $\rightarrow B_s \rightarrow \phi \mu^+ \mu^-$
- add u quark as spectator $\rightarrow B^+ \rightarrow K^+ \mu^+ \mu^-$
- Ratios:
 - Compare muons to electrons

 Full Run 1 analysis confirms effect Run 2 update coming

Situation unclear.... If real, expect discrepancies in other $\mathbf{b} \to \mathbf{s}$ decays ..

Other $b \rightarrow s \ \mu^+\mu^-$ decays

- Decay modes with same effective Feynman diagram accessible
 - \rightarrow different spectator quarks

 Test for same new effects
 → expect suppressed branching fractions

Branching fractions of $b \rightarrow s \ \mu^+\mu^-$

- Analysis of large class of $b \rightarrow s, d \mu^+\mu^-$ decays
 - Several tensions seen, but individual significance is moderate

Branching fractions of $b \rightarrow s \ \mu^+\mu^-$

- Analysis of large class of $b \to s, d \ \mu^+ \mu^- \text{decays}$
 - Several tensions seen, but individual significance is moderate
 - Tendency to undershoot prediction of differential x-sections

 intriguing hint or theoretical issue in prediction?

\rightarrow We need cleaner tests ...

Flavour changing currents: Leptons

- Couplings of W^{\pm} and Z^{0} are equal for all lepton families
- Confirmed many times, e.g. in decays

 g_{τ} : "weak coupling constant for taus"

Compare decays	Measured ratio		
$\mu^+\!\rightarrow e^+\nu_e\overline{\nu}_\mu\;\;\text{und}\;\tau^+\!\rightarrow e^+\nu_e\overline{\nu}_\tau$	$g_{\tau} / g_{\mu} = 0.999 \pm 0.003$		
$\tau^+\!\rightarrow e^+\nu_e\overline{\nu}_\tau \text{ und } \tau^+\!\rightarrow \mu^+\nu_\mu\overline{\nu}_\tau$	$g_{\mu} / g_e = 1.001 \pm 0.004$		
$\pi^+\!\rightarrow e^+\nu_e$ und $\ \pi^+\!\rightarrow \mu^+\nu_\mu$	$g_{\mu} / g_e = 1.001 \pm 0.002$		

in $Z^0 \! \rightarrow e^+ e^-\!,\, Z^0 \! \rightarrow \mu^+ \mu^-\!,\, Z^0 \! \rightarrow \tau^+ \tau^-$

Standard model: All leptons carry same weak
 → Lepton-Flavour Universality

Lepton universality almost untested in loop decays
 → test this in ratios of semileptonic decays

- Very low hadronic uncertainties, electroweak corrections O(1%)
- Any significant deviation from 1 is a clear sign for New Physics

• Measurement as double ratio

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu\mu)}{\mathcal{B}(B^{+} \to K^{+}ee)} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+}J/\psi(\mu\mu))}{\mathcal{B}(B^{+} \to K^{+}J/\psi(ee))}$$
$$= \frac{N(K^{+}\mu\mu)}{N(K^{+}J/\psi(\mu\mu))} \cdot \frac{N(K^{+}J/\psi(ee))}{N(K^{+}ee)} \cdot \frac{\varepsilon(K^{+}J/\psi(\mu\mu))}{\varepsilon(K^{+}\mu\mu)} \cdot \frac{\varepsilon(K^{+}ee)}{\varepsilon(K^{+}J/\psi(ee))}$$

- PID specific uncertainties cancel to first order
- Test consistency with resonances
 - $r_{J/\psi} = 1.014 \pm 0.035^{(stat+syst)}$ (known to be 1 at 0.4%)
 - $R_{\psi(2S)} = 0.986 \pm 0.013^{(stat+syst)}$

$$r_{J/\psi} = rac{\mathcal{B}(B o K^+ J/\psi(\mu\mu))}{\mathcal{B}(B o K^+ J/\psi(ee))}$$

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))} / \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}$$

• First evidence of violation of LFU

 $R_K = 0.846^{+0.042}_{-0.039} \, {}^{+0.013}_{-0.012}$

- SM hypothesis: p-value = 0.0010
- Evidence of LFU violation at 3.1σ
- Indication: Muons show issue with SM, Electrons seem consistent
- More channels to confirm or disprove measurement under study

• Global analysis of all observables & fit to Wilson coefficients

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ls}^* V_{lb} \frac{\alpha}{4\pi} \sum_i C_i \mathcal{O}_i$$
$$\mathcal{O}_9^{\mu} = (\bar{s}_L \gamma_{\mu} b_L) (\bar{\mu} \gamma^{\mu} \mu)$$
$$\mathcal{O}_{10}^{\mu} = (\bar{s}_L \gamma_{\mu} b_L) (\bar{\mu} \gamma^{\mu} \gamma_5 \mu)$$

Significance between 3.9σ and >> 5σ , depending on fine print

- Intriguing: a coherent picture seems to emerge.
 Some analyses: large significances which has lead to excited discussions of Z's, Leptoquarks, etc
- Experimentalists view: Hypotheses non fingo Excitement premature: we need significant individual measurements

- Results shown here (mostly) use ¼ ½ of the already recorded datasets
 → updates are progressing well
- Beyond that: Excellent future landscape for flavour @ LHC :

- HL-LHC funded until 2035!
- LHCb: significant detector upgrade in LS2 (now), GPDs follow in LS3
- LHCb also plans upgrade 2 for LS4

	Integrated luminosity				
	LHCb	GPD			
Run 1	3	25			
Run 2	9	100			
Run 3	23	300			
Run 4	50	+300+/a			
Run 5,6	300+	+300+/a			

A new player coming up: Belle 2

- Physics run of Belle 2 started
 - First results published
 - Significant luminosity (for LFU tests) ~2024

New ideas to exploit flavour

- Trigger & reconstruction are the main bottlenecks to exploit huge GPD flavour samples
 - New 2018: CMS "parks"
 ~10⁹ unbiased B decays
 - Studies on low-PT electron reconstruction ongoing
 - Interesting sensitivity expected
- At HL-LHC: 10¹¹ B-hadrons (Belle2 dataset) will be produced every ~30 min
 → is it possible to exploit this dataset?

Summary

- Flavour physics is a great way to challenge Standard Model
 - CP violation and CKM sector: many sensitive tests, CKM picture consistent on ~10% level
 - Charm physics: experiment driven, CPV observed 2019
 - Special area of interest: $b \rightarrow s \ell^+ \ell^-$: flavour anomalies
- Intriguing pattern: flavour anomalies
 - BR and angular observables
 - Lepton flavour universality
- Intense experimental program ongoing to verify anomalies

		$\mathcal{A}(B \to K^* \pi^*)[10^{-2}]$	4	Belle II
	(Complet Brith 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	dila	2 LHCb/Belle II
U	•			
		$\mathcal{B}(B \to \tau \nu) [10^{-6}] \qquad \qquad$	$\frac{3\%}{7\%}$	Belle II Belle II
	_	• I Ime dependent B _s physics	3%	Belle II
TTTCL	$- \frac{R(BPt/Pn^{T}R)}{2} \rightarrow I/u \oplus B \xrightarrow{***} d\phi$	2%	Belle II&LHCb	
LHCI	0	Radiative & EW Penguins'		
		• $B_s \frac{\mathcal{B}(B_s \mathcal{H}^+ \mathcal{X}_s \gamma)}{\mathcal{H}^s \mathcal{X}_s} \rightarrow (1 - 2)$	4%	CBERG
		$ \xrightarrow{S} A_C \not = (B \to X_{s,d} \gamma) [10^{-2}] $	0.005	
- 1	• CKM angle γ	0.03 0.05		
	h		0.05	Belle II
^g long	• $CP_{\mathcal{B}(B_s} \overset{I}{\to} \overset{P}{\to} \overset{P}{\to} \mathfrak{d}_{[10^{-6}]} **$	0.3	Belle II	
60000		• $\mathbf{B} \xrightarrow{\mathcal{B}} (B_{\mathbf{X}} \xrightarrow{K_{\mathbf{Y}}^{*}} \overline{\nu}) (\Phi_{\mathbf{X}}^{-6})$	15%	Belle II
		$\mathcal{B}(B \rightarrow K_{\nu}\nu) [10 - 3] \mathcal{O}(B \rightarrow K_{\nu}\nu)$	20%	Belle II
$_{g}$	• $\mathbf{B} \xrightarrow{q_0^* A_{\mathbf{R}}(B)} \sqrt{(\mathbf{G} \times \mathbf{G})} \xrightarrow{K^* \mu \mu}_{***}$	0.05	LHCb/Belle II	
		$\mathcal{B}(B_3 \xrightarrow{\bullet} \tau \tau) (100 \text{ Groups of } \tau \bullet) $	< 2 10%	mont mat
		Charm physics	1070	
		${\cal B}(D_s o \mu u)$ ***	0.9%	oværlap:
		Semileptonic B decays	2%	spenty
		$\Delta A_{CP}(D^0 \to K^+ K^-) [10^{-4}] \overset{**}{\longrightarrow} $	0.1	LHCb
e^+	b	• $\mathbf{D} \xrightarrow{\mathbf{A} \cup \mathbf{A} \cup \mathbf{C} \to \mathbf{K} \times \mathbf{A} \to \mathbf{D} \to \mathbf{L} \times \mathbf{A} \to \mathbf{D} \to \mathbf{L} \times \mathbf{A} \to \mathbf{A} $	-0.03	Exported Orthonian Experilit
		• \mathbf{D} and \mathbf{D}^{0} \mathbf{p} at the \mathbf{h}^{-} \mathbf{p}^{-} \mathbf{h}^{-} \mathbf{h}^{-} \mathbf{h}^{-}	.10.0 a C-	cortainty Belle II
		Tatur angles & sides		Certainty Delle II
e-	\overline{b}	• $\tau - \tau \mathbf{p} \mathbf{h} \mathbf{v} \mathbf{s} \mathbf{k} \mathbf{c} \mathbf{s}$: LFV *** ***	< 5	0.4 Belle II Belle
		$\tau \xrightarrow{\psi^{1}}_{\to} e^{\gamma} [10^{-9}] \qquad \qquad$	< 10	1.0 Belle II Belle
R	• $B \xrightarrow{\tau \to \tau} \overline{\mu} \mu \nu \mu^{-} \nu \xrightarrow{***} ***$	< 0.3	<u>Belle II/LHCb</u> Belle	
	$\mathbf{D} = S(\mathcal{B}_{\mathbf{k}} \rightarrow J/\psi \phi) \qquad ***$		0.01 "the all the inter IoHCb	
	• $\mathbf{D} \longrightarrow \mathbf{X}_{cb} \text{ incl.}, \mathbf{D} \longrightarrow \mathbf{VV} $ ***		1% Inclusive \aleph	
		• $B \rightarrow \mathbb{X}_{0} \notin \mathbb{Z}^{+}$ (inclusive) ***		1.5% neutrals Belle
		$ V_{ub} $ incl. **		3% Belle
Belle II		• $\mathbf{B} \rightarrow \mathbf{X}_{b} \notin (\text{inclusive})$ **		2% Belle
			J	
22 7 2021		$S(B \to \phi K^0)$ ***		0.02 57/55 Belle
		$C(D \rightarrow m' K^0)$ ***		

Accessible energy scales

G. Isidori, HL/HE-LHC workshop, March 19

