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Outline

I Several methods have been proposed for improving parton
shower generators to NLO accuracy.

I NLO+PS methods are routinely used by theorists and
experamentalists for everyday LHC physics

I NNLO+PS methods are growing in importance.
I Challenges:

I Going to NNLO order in a systematic way. At the moment we
are climbing up from easy processes to more complex ones ...

I Improving resummation accuracy. Given that proposals for
NLL showers are appearing, how do we adapt (or formulate
new) NLO+PS methods that can comply with them?

I Multi-jet merging strategies: still not quite satisfactory (in my
opinion). Can they become an alternative to better showers?
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Outline

From a theoretical viewpoint, there is still no clear consensus on
what are the theoretical requirements an NnLO+PS generator
should have, besides of (the obvious one) being NnLO accurate for
inclusive observables

This situation goes in pair with the general lack of a precise
qualification of theoretical requirements that Shower generators
should have, a problem that has been directly addressed only in
recent times.

In order to make progress, it is useful to understand where we are,
analize the various methods, the basic ideas underlying them, and
their differences.
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Outline

In this talk I will review several NnLO+PS methods
with the following aims:

I Formulate the essence of the methods, in a language that is
as much as possible common to all of them.

I Pinpoint “features” that can help discussing the differences
among the methods.

I I will mostly discuss n = 1, i.e. NLO. For methods that have
only been developed at NNLO: I will downgrade them to NLO
to discuss them, for two reasons:
I It is likely that features that are present or absent at NLO will

be present or absent also at NNLO.
I NNLO methods don’t fit well in slides.
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Caveats

Caveats:

I The “common language” that I choose, is POWHEG-centric for
obvious reasons.

I I only focus upon selected aspects (the most elementary
ones). (A full review of all methods would be highly desirable,
but would require a wide collaboration, much more work and
a lot of patience.)

I Not all methods are discussed. For example, DEDUCTOR is not
included (Nagy+Soper, 2014) (maybe I should have tried
harder ...)
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Common Language

I define a mapping from the phase space with radiation to the
Born phase space as:

Φ = {Φ0,Φrad}, Φ′ = {Φ0,Φ
′
rad}

The (unspecified) “hardness”, or ordering variable defined in terms
of the phase space with radiation is dubbed tΦ.
When I write

B(Φ0)dΦ0 + R(Φ)θ(tΦ − tcut)dΦ

or
(B(Φ0) + R(Φ)θ(tΦ − tcut)dΦrad)dΦ0

I usually mean:
I Events generated with weight B(Φ0), to be showered with

hardness less than tcut (if tcut is small they are not showered).
I plus events generated with weight R(Φ)dΦ, having tΦ above

tcut, to be shower with hardness less than tΦ

Exception (i.e. not usual behaviour) will be further specified.
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NLO+PS: MC@NLO, POWHEG

I MC@NLO: Frixione,Webber,2002;
Alwall,Frederix,Frixione,Hirschi,Maltoni,Mattelaer,Shao,
Stelzer,Torrielli,Zaro,2014

I POWHEG:
P.N.2004;Frixione,Oleari,P.N.2007;Alioli,Oleari,Re,P.N.2011;
several contributions to the core code by
Zanderighi,Hamilton,Jezo,Ferrario-Ravasio, plus several
authors of specific processes.
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NLO+PS: MC@NLO, POWHEG

One defines

B̄s = B0(Φ0) + V (Φ0) +

∫
RS(Φ,Φrad)dΦrad.

S(tΦ,Φ0) = exp

[
−
∫
tΦ′>tΦ

RS(Φ0,Φ
′
rad)

B0(Φ0)
dΦ′rad

]
Basic NLO+PS core formula:

dσ = B̄s(Φ0)S(tcut,Φ0)dΦ0︸ ︷︷ ︸
(Small!) Shower < tcut

+ B̄s(Φ0)S(tΦ,Φ0)× RS(Φ0,Φrad)

B0(Φ0)
θ(tΦ − tcut)dΦ︸ ︷︷ ︸

Shower < t(Φ)

+ (R − Rs)dΦ︸ ︷︷ ︸
Shower < t(Φ)
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Why it works:∫
S(tΦ,Φ0)× RS(Φ0,Φrad)

B0(Φ0)
dΦradθ(tΦ − tcut) = 1− S(tcut,Φ0)

(same reason why it can be generated by a shower algorithm). So

dσ

dΦ0
= B̄s(Φ0)S(Φ0, tcut) + B̄s(Φ0)(1− SΦ0 (tcut)) +

∫
(R − RS)dΦ

= B̄s(Φ0) +

∫
(R − RS)dΦ

= B0(Φ0) + V (Φ0) +

∫
R(Φ,Φrad)dΦrad.

(NLO inclusive cross section at fixed underlying Born kinematics).

I MC@NLO: RS is the Shower approximation to the real term;
R − Rs : (H-events).

I POWHEG: RS = RF (tΦ), F (tΦ) < 1,
F (tΦ)→ 1 in the singular limit (i.e. as tΦ → 0).
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NLO+PS: MC@NLO, POWHEG

Notice that:

I This uniform formulation of POWHEG and MC@NLO appeared in
the NLO+PS review by Webber,P.N.2012.

I One feature that appears in the MC@NLO method has to do
with the IR finiteness of the hard contribution, i.e. R − RS .
Often shower MC’s are not accurate in the soft region, leading
to an incomplete cancellation of IR singularities that has to be
handled in some way.

I The other well-known feature is the presence of negative
weights in the MC@NLO formulation. Whether this is
acceptable is not a theoretical issue but a practical question,
depending upon the size of the fraction of negative weights
and the availability of computer resources
(see also Frederix,Frixione,Prestel,Torrielli,2020).
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Problems with the matching to parton showers:

I In transverse momentum ordered shower these methods rely
upon the shower for LL accuracy

I For angular ordered showers, the generation of the hardest
emission as the first one is in conflict with angular ordering.
This affects all POWHEG events, and H-events in MC@NLO.

These problems have been known since the very beginning (most
of the POWHEG 2004 paper is about this). They are now dealt with
in Herwig7 (that provides appropriate truncated showers).

For pT -ordered shower and POWHEG the current statement is that
the resummation accuracy of the NLO+PS implementation is as
good as that of the shower.

This may turn out to become insufficient in the near future, and
more problems related to merging may come up as studies on
shower accuracy proceed.
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NLO+PS: KrKNLO

(Jadach,P laczek,Sapeta,Siódmok,Skrzypek,2015)

dσ = B̄s(Φ0)

{
S(tΦ,Φ0)× RS(Φ)

B0(Φ0)

}
×
[
R(Φ)

RS(Φ)

]
dΦ

As in MC@NLO, RS is the MC approximation to R, but it reweights
by R/RS rather than adding R − RS .

I No negative weights!

I Cross section accurate at NLO, but not equal to the NLO
cross section ... (may not please the “purists” of the NLO...)

I Needs full coverage of phase space by the shower:
I Needs also a good coverage: if R/RS becomes large,

unweighting efficiency will drop to unacceptable levels.
I Needs good (perfect?) cancellation of singularities in R/RS .

If RS misses some singular region, it will diverge.
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NLO+PS: KrKNLO

On NLO accuracy:

dσ = B̄s(Φ0)

{
S(tΦ,Φ0)× RS(Φ)

B0(Φ0)

}
×
[
R(Φ)

RS(Φ)

]
dΦ

= B̄s(Φ0)

{
S(tΦ,Φ0)× RS(Φ)

B0(Φ0)

}
× dΦ

+ B̄s(Φ0)

{
S(tΦ,Φ0)× RS(Φ)

B0(Φ0)

}
×
[
R(Φ)

RS(Φ)
− 1

]
dΦ. (F)

In (F) the singularity cancel in the square bracket, so we can set
the Sudakov to 1, and get

(F ) =
B̄s(Φ0)

B0(Φ0)
× [R(Φ)− RS(Φ)] dΦ

equal to the H-events of MC@NLO up to NNLO terms.
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MC@NLO+KrK?

Why not both?

dσ = B̄s(Φ0)

{
S(tΦ,Φ0)× RS(Φ)

B0(Φ0)

}
×
[
R

RS
θ(RS − R)

]
dΦ

+ θ(R − RS) [R − RS ] dΦ

I Reweighting factor < 1, can be done by hit and miss.

I No full coverage needed.

I H-events positive.

I Possible variants: replace R → RF (t) (hdamp factor) and add
(1− F (t))R to the H-events. Can tune the amount of NNLO
terms injected in the calculation.

I Think about it: MadGraph5 aMC KrK@NLO ...
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UNLOPS

I CKKW-L, Lönnblad,2002; Lavesson,Lönnblad,2005;
Lönnblad,Prestel,2012.

I UMEPS, Lönnblad,Prestel,2012

I UNLOPS, Lönnblad,Prestel,2012+, (Lavesson,Lönnblad,2008)

I See also: Plätzer,2012; Bellm,Gieseke,Plätzer,2017.

I UN2LOPS, Höche,Li,Prestel,2014,2014+

I N3LO-PS attempts, Prestel,2021.

I follow mostly Höche,Li,Prestel,2014 (where a downgraded NLO
version of the method is also illustrated) for this presentation.
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UNLOPS

What is implemented.

dσ =

{[
B̄(Φ0)−

∫
tc

S0(t,Q)R(Φ0,Φrad)dΦrad

]

+ S0(t,Q)R(Φ0,Φrad)θ(t − tc)dΦrad

}
dΦ0

How it is implemented:

dσ =

{[
B̄(tc )(Φ0) +

∫
tc

[1− S0(t,Q)]R(Φ0,Φrad)dΦrad

]

+ S0(t,Q)R(Φ0,Φrad)θ(t − tc)dΦrad

}
dΦ0

B̄(tc )(Φ0) = B̄(Φ0)−
∫
tc

R(Φ0,Φrad)dΦrad

= B(Φ0) + V (Φ0) +

∫ tc

R(Φ0,Φrad)dΦrad
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UNLOPS

So:

I Events with a Born-like kinematics and weight B̄(tc ) are
generated, and NOT showered

I Events with weight R are generated with a cutoff tc . They are
weighted with the Sudakov form factor for not radiating
anything harder S(t,Q), and dressed with further shower
radiation. At the same time an event with Born kinematics,
weighted with 1− S(t,Q), is generated and not showered.

Notice that B̄(tc ) becomes negative when αS log2 Q
tc

' 1, its value
being compensated by the real cross section of the 1− S(t,Q)
term, at the price of generating negative weighted events.
Should I think of tcut as a Shower cutoff or a merging scale?
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UNLOPS

Consider that if B̄ = B and R is the shower approximation to R
used to define S0, we have

lim
tc→0

[
B̄(Φ0)−

∫
tc

S0(t,Q)R(Φ0,Φrad)dΦrad

]
= 0

Thus, in the full UNLOPS formula, if tcut is small (i.e. is a shower
cutoff), unshowered events are an NLO fraction wrt showered ones.
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UNLOPS

I Its origin is back to the CKKW: generate matrix elements
according to the tree-level formula (with a cutoff) and
reweight them with Sudakov form factors.

I In CKKW-L, given a matrix element one reconstract a shower
history, and implement Sudakov form factors using the shower
itself. (about reconstructing shower histories: more on Sector
Showers later in this workshop).

I LO or NLO accuracy is enforced by subtracting the (Sudakov
reweighted) cross section for the n + 1-matrix element to the
n-matrix element one.

Here I only look at one emission to expose the most elementary
features of the method.
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UNLOPS

Already at the NLO level for one emission, a feature of the
UNLOPS method shows up: the presence of unsuppressed,
unshowered events with cross section σU (U for unshowered) that,
for small tcut, have typical NLO size:

dσU =

[
B̄(tc )(Φ0) +

∫
tc

[1− S0(t,Q)]R(Φ0,Φrad)dΦrad

]
dΦ0

I Is this theoreticall acceptable to have them? (I believe not,
the authors seem to think differently)

I What should we do with them?

Remembering that

dσU =

[
B + V +

∫
[1− S0(t,Q)R(Φ0,Φrad) θ(t − tc)]dΦrad

]
dΦ0

it seems clear that, for small tcut the right thing to do is just to
shower them.
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UNLOPS

I The σU terms originate mostly from virtual and reals having t
in the Sudakov region. Showering them will spread them
(mostly) in the Sudakov region.

I The high-t region would be corrected by beyond NLO order,
since 1− S(t) is of order αS(t) for large t.

I Variants on how large a t one should allow may be possible.

I The direct computation of σU (without using the give and
take algorithm) is no more difficult that typical B̄ calculations
in POWHEG.

Whether the interesting features of UNLOPS as far as multijet are
concerned can be maintained with the above strategy, may requires
furhter thinking ...
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GENEVA

I Alioli,Bauer,Berggren,Tackmann,Walsh,2015, DY at NNLO

I Alioli,Bauer,Berggren,Tackmann,Walsh,et al.,2014, GENEVA at
NNLO.

I Alioli,Bauer,Berggren,Hornig,Tackmann,2013, NLO merging.

For the present talk: Alioli,Broggio,Kallweit,Lim,Rottoli, 2019,
where a quite clear formulation of the method is presented.
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GENEVA

At NLO, the GENEVA formula may be written as follows

dσ = B(Φ0)S(tcut,Φ0)dΦ0

+ B(Φ0)
dS(t,Φ0)

dt
θ(t − tcut)P(Φ)dΦ

+

(
R(Φ)− B(Φ0)

[
dS(t,Φ0)

dt

]
1

P(Φ)

)
θ(t − tcut)dΦ

I B(Φ0)S(tcut,Φ0) is the resummed, inclusive cross section for
t < tcut

I P is a splitting function, such that
∫
dΦrad δ(t − t0)P(Φ) = 1

I [. . .]1 takes out the first order term from what’s inside.
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GENEVA

Integrating it up to a given t0, it yields the resummed, NLO
matched cross section for the process, provided B(Φ0)S(t,Φ0) is
NLL’ accurate:

B(Φ0)S(t,Φ0) = (B(Φ0) + SV (Φ0))

× exp
[
−L
(
αSL + α2

SL
2 + . . .

)
+
(
αSL + α2

SL
2 + . . .

)]
In order to have NLO accuracy, the red terms should be included.
NLL’ accuracy guarantees this, but it is not mandatory.

The hope/aim of GENEVA (I think) is to achieve also NLL accuracy.
This is, by construction, would be the case for the t, provided

I S is the full NLL Sudakov

I The shower does not change the initial t at order αS .
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GENEVA

I Local cancellation of singularities in the last line is not
guaranteed in case of complex soft patterns (P is in the
collinear approximation). Cancellation takes place by
construction in integrated quantities.

I GENEVA is the only method attempting to improve
resummation aspects of NLOnPS generators.

I In what sense resummation is improved?

It seems that there is a conflict in trying to maintain the NLL
accuracy of the resummation observable without spoiling global LL
accuracy of the generator.
Understanding these issue at the NLO,NLL level would be already
very useful.
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MiNLOPS

I Originaly formulated for matching without merging
Hamilton,Zanderighi,P.N.2012, Rikkert,Hamilton,2015

I Method for NNLO+PS Hamil-
ton,Oleari,Zanderighi,P.N.2013,Hamilton,Re,Zanderighi,P.N.2013,
by reweighting.

I MiNNLOPS: NNLO+PS by correcting,
Monni,Re,Wiesemann,Zanderighi,P.N.2020.

MiNLOPS (with one N) does not exist, the following is a downgrade
of MiNNLO.
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MiNLOPS by Reweighting

MiNLOPS formula:

dσ =
σNLO(Φ0)

σLO(Φ0)
S(tΦ,Φ0)R(Φ)dΦ.

I S(t,Φ0) is a Sudakov form factor at a scale t (typically a
transverse momentum)

I R(Φ) has the couplings and PDFs evaluated at the scake tΦ.

For this to work, we must guarantee that∫
S(tΦ,Φ0)R(Φ)dΦrad = σLO(Φ0) +O(αS).
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MiNLOPS by Reweighting

In the MiNLO procedure we identify the Monte Carlo result for a t
differential distribution with a resummation formula that is at least
LO accuracy when integrated:

dσ(t,Φ0)

dt
= B(Φ0)

d

dt
S(t,Φ0) + RF (F1)

= B(Φ0)S(t,Φ0)
1

t
(ALαS(t) + B αS(t) + ...) + RF (F2)

=

∫
S(t,Φ0)R(Φ) δ(t − tΦ)dΦrad (F3)

where L = logµ2/t2. We have the properties:

I (F1) integrates to the LO result up to terms of O(αS).

I (F2) is obtained by taking the derivative and expanding up to
the order needed to match (F3) (i.e. O(αS)).
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MiNLOPS by Reweighting

When integrating in t, remember that the Sudakov peaks when

αS(t)L2 ≈ 1, so each power of L (including dt/t) counts as α
− 1

2
S :∫ Q

tcut

S(t,Φ0)Lmαn
S (t)

dt

t
≈ (αS(Q))n−

m+1
2 . (1)

What is negleced in (F2) has the form

B(Φ0)S(t,Φ0)
1

t

(
Lα2

S (t) + α2
S (t) + . . .

)
(2)

that upon t integration starts at order αS(Q). So, (F1) and (F2)
differ by terms of O(αS), and (F2) matches (F3) by construction,

Thus the whole thing is LO accurate up to terms of order αS .

The equality of the second and third line is certainly true if
S(t,Φ0) is the NLL Sudakov. However, it is enough to require that
A and B are the same that one gets with the full NLL Sudakov.
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MiNLOPS by Correcting

MiNLOPS formula:

dσ = S(tΦ,Φ0) [R(Φ) + C (tΦ,Φ0)F (Φ)] dΦ.

I C (tΦ,Φ0) is the correction.

I Not much is required on F :
∫
F (Φ)δ(t − tΦ)dΦrad = 1. In

other words, the correction C lives at an underlying Born
kinematics, but with a finite t. F must spread out the Φ0

kinematics at a given t over the full Φ kinematics.
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MiNLOPS by Correcting

Now we have

dσ(t,Φ0)

dt
= B(Φ0)

d

dt

[
S(t,Φ0)(1 + H(Φ0)αS(t))

]
+ RF (F1)

= B(Φ0)S(t,Φ0)
1

t

(
ALαS(t) + B αS(t)

+ P Lα2
S (t) + Q α2

S (t) + ...
)

+ RF (F2)

=

∫
S(t,Φ0)R(Φ) δ(t − tΦ)dΦrad + D(t,Φ0) (F3)

=

∫
[S(t,Φ0)R(Φ) + D(tΦ,Φ0)F (Φ)] δ(t − tΦ)dΦrad (F4)

where

I In (F2), P integrates to O(αS), Q to to O(α
1+ 1

2
S ), and must

be kepth for O(αS(Q)) accuracy!
I P and Q are not in S(t,Φ0)R(Φ), must be added:

D(t,Φ0) = P Lα2
S(t) + Q α2

S(t).
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MiNNLO

I The goal of the method was to formulate a merging approach,
and the an NNLO+PS approach without merging scales. In
fact, in MiNLO the only scale that appears must be the
non-perturbative cutoff, near the Landau pole.

I Is it possible to build a MiNLOPS system as good as POWHEG or
MC@NLO?
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Actual NNLO+PS implementations

Of the methods discussed so far, their application for NNLO+PS
follows different paths:

I GENEVA follows a uniform method, going one further step to
reach NNLO (and NNLL’) accuracy.

I MiNNLOPS, and the reweighting approach, uses a hybrid
method. In the example of Higgs production, H + J is
generated at NLO using POWHEG, while the extension to
NNLO uses MiNLO.

I UNLOPS also uses a hybrid approach, with the first stage
(H + J) carried out with an MC@NLO like approach, and the
NNLO extension uses UNLOPS.
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Conclusions and General Remarks

I We are now for the NNLO+PS at a similar stage of NLO+PS
in the middle 2000: several implemented processes for neutral
systems; tt̄ just appeared.
Can we do jets? Can we improve over NLO+PS jets?

I NLO+PS implementations with NLL accuracy.
By NLL here I mean that includes all the following terms

exp(Lg(αSL) + g1(αSL) +O(αS(αSL)m)) (3)

Are there available methods that extend well in this direction?

I NLO+PS implementation with NLL accuracy for a single key
observable. requiring at least general LL accuracy (does
GENEVA already fulfill this?)

I Changing the rules of the game: how about asking only for
the a fixed number of powers in g1 to be correct? Or any less
demanding requirement that can be acceptable in practice?
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