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Why Monte Carlo Event Generators?

o  MC event generators are ubiquitous at the LHC
o Different use cases lead to different requirements
m To determine detector efficiencies, optimise analyses, unfold the data for detector effects:

need the best possible description of the data, irrespective of the formal accuracy of the prediction

m To estimate SM backgrounds, extrapolate from control to a signal regions, interpret the data:
need the best possible formal accuracy, Irrespective to whether the predictions will describe data.

Essential to have recipes to estimate the associated theoretical uncertainties



State-of-the art (in experiments)

o The LHC pushed the automation of NLO+PS
and of LO/NLO-merging techniques

Needed to describe with decent accuracy
high jet multiplicity phase-spaces

o These approaches now constitute the backbone
of the MC samples used in experiments

Main background samples use
NLO-merging (MEPS@NLO, FxFx, MiNLO)

Inclusive samples for precision measurements
typically at NLOPS (Powheg/MC@NLO)

BSM signal samples rely on
LO-merged (MLM/CKKW-L) simulations
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Generator usage in ATLAS/CMS

based on Run-2 MC
campaign for 2016 data
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The need for accuracy

With the increase in the integrated luminosity we are moving towards the analysis of
very exclusive phase-spaces and rare processes while our measurements reach extreme accuracies

m  Experimental uncertainties (mostly) scale with the integrated luminosity
m But theory uncertainties do not!

Improvements in theory are essential for the successful exploitation of the (HL-) LHC dataset

In the next set of slides we’ll go through:
m afew example cases where the need for higher accuracy is evident already now

m A wishlist of theoretical (and other more technical) developments



Modelling of color singlet p-

o The p; of colour singlets is the prime distribution to benchmark our understanding of QCD

m  Can be measured to permill accuracy (in Z events)

m  Relevant for many precise measurement (W-mass, Higgs p;)

m  Probes transition from non-perturbative physics to resummation and fixed-order
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-14/
http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-17-010/index.html

Example: W-mass measurement

e W-mass measurement very sensitive to the description of the W boson p,

o Relevant region is p;"<40 GeV
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e But crucial to get an accurate estimate of effects which decorrelate between W and Z



W/Z ratio and uncertainties

Attempt to describe the ratio through higher accuracy analytic calculations or MC generators

o  Only shower and NLOPS predictions able to describe the data
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o  Decorrelate u_ between light and HF contributions as a proxy of HF matching scale variations


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-18/

A QCD model for the W pT

e |LHCDb presented last month their first W-mass measurements using 13 TeV data
o  Obtained performing template fits to the p* distribution

e The issues with the W/Z extrapolation are avoided by simultaneously fitting to the p,* distribution
the W boson mass and the parameters of a QCD model of the W p_.

BT e Method stress-tested by  successfully fitting
—a, pseudo-data from different predictions
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e But to which accuracy can we believe the correlations
in p; given by these two Pythia8 parameters?
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https://arxiv.org/abs/1907.09958

NNLO+PS, the new standard?

NNLOPS formally developed since a while (UN2LOPS), in the past couple of years an explosion of new results
Mostly Geneva (only beta release public) and MINNLOPS (now going beyond color singlets)

e (Good agreement with N3LL analytic resummation, better than LL shower accuracy
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https://arxiv.org/abs/2102.08390
https://arxiv.org/pdf/2103.12077.pdf

NNLO+PS and shower recoils

e So far MINNLO/Geneva have only been interfaced to the Pythia8 shower
e Surprisingly large impact of ISR shower recoil: real uncertainty or is global recoil just wrong?

e Can we match NNLO to other showers at LL accuracy? What about NLL?
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MINNLOPS and the W/Z ratio

New MiNNLOPS within 1-sigma of Pythia8 AZ (and so of data) in the W/Z ratio

Fixes problems with MiINLO and analytic resummation codes

Perfect agreement with NNLO+N3LL from Matrix+Radish

Can we construct a W pT model with a more sophisticated/QCD driven model than with Pythia8
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Uncertainties for ME predictions

A prediction is only as good as its associated uncertainty

More and more LHC analyses are moving towards complicated fits, in which theory uncertainties are
incorporated in the likelihood and determined in situ together with the parameter of interest

o  Was the case only for Higgs and BSM, but SM measurements are catching up
o General belief that data can constrain theory beyond its validity range

We need a proper and reliable model of theory uncertainties, including
their correlations across different phase-spaces, observables and processes!

This is notably a very complicated problem for missing higher order uncertainties,
which we estimate with scale variations

o  Several attempts for fixed-order uncertainties in the past years (2006.16293, 2106.04585)

Any progress in this area would be highly welcome
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https://arxiv.org/abs/2006.16293
https://arxiv.org/abs/2106.04585

Uncertainties for ME predictions

Using the resummation formalism can exploit the known structure of missing

to parametrise them in terms of nuisance parameters

— Each resummation order only

boundary conditions

anomalous dimensions

order || B |8 ba |92 o2 Ta Bs

depends on a few
semi-universal parameters LL ho | so bo — — To fo
. NLL’ hi s1 b ’73 Yo T'1 pBa

— Unknown parameters at higher NNLL | & o b h s T 3

orders are the actual sources of ™2 1 %2 22 | T 2 P
perturbative theory uncertainty NZLL™ || Fs bs |72 72 TI's PBs
N'LL || ha | 8a ba |78 3 Ta Pa

@ Basic Idea: Use them as theory nuisance parameters

v~ Vary them independently to estimate the theory uncertainties
v~ Impact of each independent nuisance parameter is fully correlated across all

kinematic regions and processes

v~ Impact of different nuisance parameters is fully uncorrelated

E. Tackmann@LH19

@ Price to Pay: Calculation becomes quite a bit more complex
» Implement complete next order in terms of arbitrary theory parameters

higher-orders
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https://phystev.cnrs.fr/wiki/_media/2019:groups:sm:2019-06-14_lh_theorynps.pdf

Uncertainties for ME predictions

e Obvious use-case in the W->Z extrapolation at small p_ for the W-mass
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e Can something of this sort be incorporated in MC generators?

o i.e. MINNLO/Geneva exploit similar ingredients from resummation


https://phystev.cnrs.fr/wiki/_media/2019:groups:sm:2019-06-14_lh_theorynps.pdf

Merging at high multiplicities

o  NLO-merging is the workhorse of ATLAS/CMS MC samples

m Provides an excellent description of the data in exclusive phase-spaces
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Merging at high multiplicities

o  Current applications only limited by computing considerations. But work still ongoing towards:
m  Optimisation of subleading choices, to get better description of data
m  Optimisation of computational resources (negative weight fraction, phase-space biasing)

o Example ATLAS optimisation of Sherpa 2.2.11 samples:
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-033/

Heavy Flavour production processes

o Heavy flavor production constitute a special class of processes

m HF-initiated contributions to Z, W, Higgs o distributions

m  Z/W+HF as background to VH->bb, tt+bb background to ttH,4-top
o Described with 5FS samples, as shower contribution cannot be neglected

m  Complex reweightings often needed to obtain decent description of the data
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https://arxiv.org/abs/1803.04336

Heavy Flavour production processes

e Variable flavour-number scheme (FONLL-like) recently
implemented by Sherpa in the context of MEPS@NLO merging

o Merging of a 5FS massless calculation with a
4FS massive one (applied to Z+jets/Z+bb)

o  Double counting of events can conveniently be
removed through an event-weight

o Already being benchmarked in ATLAS

e Opens up new interesting possibilities:
o Extension to other processes (it/tt+bb, jets?)
o Extension to include charm AND bottom thresholds?

o How hard is it to extend it to other NLO-merging
schemes: FxFx, MINLO (MiNNLO)?
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https://arxiv.org/abs/1904.09382

Resonance-aware matching

o ttbar/Wt diagram removal/subtraction prescription is the dominant uncertainty in many analyses

o Resonance aware matching developed within Powheg and applied to bb4l production (1607.04538)

m Long awaiting update to same-flavour leptons
and semileptonic decays (all-had possible?)

m  Matching with showers cumbersome,
again need extension of LHE standard?

m Do we need uncertainties on the width regularisation?
(alternatives to the complex-mass-scheme)

o Possible also with MC@NLO matching (1305.7088),
but negative weight fraction >40%. Perspectives?

o NLO for a few other processes exist (itj, ttW).
Could we get them matched to the shower?
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https://arxiv.org/abs/1607.04538
https://arxiv.org/abs/1305.7088
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2017-05/figaux_01a.png

Not only QCD (higher EW orders)

EW effects beyond LO can become important with the increasing accuracy of our measurement,
or when they get enhanced in specific phases-spaces

Different level of approximations available in MC generator codes
m  QED FSR typically included through shower approximation (i.e. Photos, YSF)
m EW Sudakovs logarithms at high energy
m  Full NLOPS at QCD+EW for selected processes and analyses

All needed and being explored by experiments
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QED FSR

o EW corrections can be enhanced by collinear final-state QED radiation, leading to large shape effects
m Typically resummed within the parton shower approximation (i.e. Photos, YSF) + ME corrections

m  Several comparisons in the past, but codes/models evolve. Do we need a thorough benchmarking?
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Iogw(y) The reweighting variable where AE is the difference in energy

between the final-state lepton pair before and after QED FSR.
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https://indico.cern.ch/event/1027304/
https://arxiv.org/abs/1510.02458

Several improvements already exist. How much would they affect precise EW measurements (m,,, 0,,)?
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QED FSR
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https://arxiv.org/abs/2002.04939
https://arxiv.org/abs/1809.10650

EW Sudakov logs

e Virtual weak corrections can reach negative 10 ATLAS Preliminary ~ pp—fi liets 3
. . S 4o V5 =13TeV, 36 b7 Sherpa 2.2.8 4
tens of percent in the Sudakov region & | L F Total Systematics —-NoEw,, 3
g& 1 (E_ { DatalEPJC79(2019)1028] é
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102 — =
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on top of the QCD-merged prediction IR ME PDF systomatics
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-023/fig_23a.png

O

So far available for W, Z, ZH/WH, diboson production

NLOPS QCD + EW

e Few selected Powheg processes allow for NLOPS QCD+EW interfaced to a QED+QCD shower

Not widely used, but W,Z being commissioned for precision EW measurements
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Can only be interfaced with Pythia8,
PHOTOS QED showers. What are the
perspectives to extend this to other QED
showers?

Shall we foresee an extension of the LHE
standard to facilitate more complex
shower veto algorithms?

25


https://arxiv.org/abs/1202.0465

In Drell-Yan, lepton rapidity cuts induce a LO constraint

|cos®*|

0.8

8.6

0.4

8.2

: NNLOJET

NLOPS QCD + EW is not enough

The fiducial selections on the decay kinematic can restrict some measurement bins to be zero at LO

LO Constraints on cos(B8)* [CC]

0.7 < |cos6*|

0.4 < |c

8 < |cos

0s6* |

p*| <

0.7

T T
LO Allowed

LO Part. Allowed
LO Forbidden

|

0.5

1

lynl

D.Walker Ph.D. thesis

cos 0* <

sinh(2(y4 0 — |Yul))
= 1+ cosh(2(Yluax — 1¥ul))

An NLOPS QCD+EW calculation will add
the NLO EW to the Born and spread it
across the Sudakov region.

But to add EW corrections to these LO
forbidden bins one would need
Z+jet NLO QCD +EW predictions?

Would it be possible to extend the
MiN(N)LO/Geneva prescriptions to
a QCD+EW merging?
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https://inspirehep.net/literature/1760674

Parton showers accuracy

CMS <35.9fb" (13 TeV)
The accuracy and uncertainties in parton showers are typically M B B ||-y|' z b5 T

o Data |
subleading for analyses which use the NLO-merged samples

<

Pythia(CUETP8M1)
Madgraph+P8(CUETP8M1)

W 2r, Herwig++(CUETHppS1) vr-f"fg,,w‘f:"_
The notable exceptions are precision analyses in top, Higgs, .2 v PH+P8(CUETP8M1)
. . L < | » PH+Herwig(EE5C) |
DY and jets, which need very large MC samples providing an X . Egrw'i\lgg
. , L s ®
accurate description of observables inclusive in radiation and 5 1 5L + NLOGNP .
sensitive to resummation = * (NLO+NLL)®NP
_E ~ [ EXxp. sys. _
o NLO-merging often introduces “artifacts” = B Theo. unc.
and cannot be used (see Z pT case) = I SMP-19-003 ]
B
. . . ho} - _
o NNLOPS .WI|| ce.rtal.n.ly hglp, provided no 196 < p_ < 272 GeV
large “matching” ambiguities are introduced T -

o
o
M

The default Pythia8, Herwig7 and Sherpa shower make up
99% of our MC productions.

High interest in new/better showers (Dire/Vincia/H7-dipole), but
little explored and often not supported for matching/merging

Ratio to data



http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-19-003/CMS-SMP-19-003_Figure_006-a.png

Parton shower uncertainties

Shower uncertainties evaluated with (x0.5,x2) variations of scales at
which the emissions are performed

o Available as weight, included in most samples

Other ambiguities (ordering variable, recoils, ...) are ignored, or
included through 2-point shower comparisons (Pytha/Herwig)

o Need expensive dedicated runs

o ATLAS study looked at variations of these choices in NLOPS
ttbar. Impact not large, but comparable to scale variations

o Also dedicated studies on recoils impact on log-accuracy from
Herwig7 (1904.11866, 2107.04051)

Another recurrent question is whether hard scattering and parton
shower scales should be correlated or not

Could we get some general recommendation on
how to construct a parton shower uncertainty band?
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https://arxiv.org/abs/1904.11866
https://arxiv.org/abs/2107.04051
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-023/

Parton shower nuisance parameters

Pythia8 allows for decorrelated variations of scales in the LO DGLAP splitting for the ISR/FSR shower,
and for separate variations of non-singular terms (1605.08352)

Decomposition lends itself to a nuisance-parameters interpretation.
o Allow the universal singular terms to be constrained by data (or higher log-accuracy predictions)

o Process and phase-space specific non-singular terms provide a limit to the possible improvements

Is this something we could adopt as a general recommendation?
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https://arxiv.org/abs/1605.08352

Shower recoils and top decays

e Recently observed how the Pythia8 shower recoil for the second emission in a top-quark decay
can have a huge impact on the reconstructed top observables and on the top mass

o  Pythia8 defaults to assign the ) Reeor] To (olovred = (%
Shower recoil to the b-quark

0,
Y
o Can choose as alternative to i } == Cloen “inberts” W as recorkr
il against the W- '
recoil against the W-boson v Weaps 74// a——
o  Neither of the two available recoils b (Bt ngab[j 3(,@5 more
(b-quark or W-boson) is “correct”, kicks  than " deserves. )

but W-recoil likely better
no Wz'dc—a_rg/e ra_dtbﬁbn-’

le—fe g“loace /CO//apgeé/ "

@ Recoil o Celowred =O/’)/

e Following discussions with the authors, /
new, more appropriate option implemented, D TLD Lg S‘:] S*OM/
with the recoil given to the top-quark ORecorler (wchich ferds 4o |e
through an eikonal reweighting factor ethancement for -cellinear psedo-collinecr ! )

= small phase space.
from P. Skands



http://skands.physics.monash.edu/slides/files/20-NoteRecoilToColoured.pdf

Shower recolls in top decays

Large impact on top mass, at the level of ~300 MeV. Comparable to FSR uncertainties

o  Top- and W-recoils numerically very similar

Vincia has an improved treatment of coherence
in resonance decays which avoids this issue

o  What about other parton showers?

A few codes allow for top decays at NLOPS
(Powheg, H7-Matchbox) but this issue
arise with the second emission

What are the perspectives for a top decay at NNLOPS?

How many other cases of “unknown uncertainties”
are currently being ignored in LHC analyses?

o i.e. color flow and shower recoill
prescriptions in VBF topologies

o
=
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NP parameters tuning

e ATLAS/CMS have a tradition to derive their own tunes of
Pythia8 (CMS now also H7) parameters

o Standard Monash includes little LHC data
And does not provide uncertainties

o Baseline Monash parameters for fragmentation
and retuning shower + MPI parameters

o Different choice of (own) input measurements and processes
e In general, the resulting parameters are mostly consistent

o ag0.118->0.126 from CMW rescaling

o CR strength very different across experiments

e Yet the small parameter differences make it difficult to compare
Analogue Pythia samples across experiments

o  Should we move to joint tunes with the author’s help/feedback?

Parameter ’ CMS | ATLAS
POWHEG
vetoCount 100 3
pTdef 1 2
pThard 0 0
pTemt 0 0
emitted. 0 0
MPIveto 0 0
SpaceShower
alphaSorder 2 1
alphaSvalue 0.118 0.127
rapidityOrder on on
pTORef 1.41 1.56
TimeShower
alphaSorder 2 1
alphaSvalue 0.118 0.127
MultipartonInteractions
alphaSvalue 0.118 0.126
alphaSorder 2 1
pTORef 1.44 2.09
ecmPow 0.03344 0.215
bProfile 2 3
coreRadius 0.7634 -
coreFraction 0.63 -

ColourReconnection

range

| 5.176 |

1.77
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PDFs and parton showers

Which PDFs should be used in the parton shower evolution?

o Pythia (and Herwig) advocate for LO PDFs, to get a positive gluon at low-x probed by MPI models

o Sherpa uses NNLO PDFs, to be consistent with the PDFs in the hard Matrix-Elements

o Is using LO PDFs only for MPI a better option?

AU.

ATLAS currently using LO PDFs, CMS tuned for different orders
and using NNLO PDFs for the nominal tune

Recent studies (see 2002.04125 and 2003.01700) showed that
shower backward evolution does not preserve DGLAP evolution

o Violation larger with NLO PDFs, but present even for LO PDFs

Which implications for current shower tunes?
And for ongoing NLO/NLL shower developments?
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https://arxiv.org/abs/2002.04125
https://arxiv.org/abs/2003.01700
http://cms-results.web.cern.ch/cms-results/public-results/publications/GEN-17-001/index.html

CMS tunes and PDFs

New CMS tunes of Herwig7 explored the description of Minimum Bias data with PDFs of different orders

o “SoftTune” fitting ag with LO PDF

Transverse charged-particle density /s = 13 TeV

R L N
o Other tunes keep a,=0.118 for consistency with hard ME, -§ T4r f—fiﬁ
and vary ag and the order of the PDFs in MPI 3; af Fﬂ ;
. i Z ]
o  Similar description of the data, % 1E -
but better chi2 with LO PDFs in MPI e ]
0'8 — CMS data
ARt o118 oS o118 oo —~SoftTune
A’,S my . » o . : o CHI :
pg FPDFset MMHT2014LO NNPDF3.1NNLO NNPDF3.1NNLO NNPDF3.1 NNLO o4r -~ CHa2 ]
2B (1m,,) 0.135 0.118 0.118 0.118 r - CH3 ]
0.2 — —
ypy [DFset MMHT2014LO NNPDF3.1NNLO ~ NNPDF3.1LO NNPDF3.1 LO ,
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http://cms-results.web.cern.ch/cms-results/public-results/publications/GEN-19-001/index.html

O

Heavy Flavour fragmentation

The description of heavy-flavour fragmentation is one of the limiting uncertainty in top mass analyses,

and important in studies of W, Z+HF and for H->bb/cc decays

Perturbative fragmentation described by the parton shower, at which accuracy?

Old studies comparing NLL resummation with Pythia6/herwig++, to be repeated?

|
m  Can we learn something from recent computations at NNLO (2102.08267)?
Non-perturbative component through phenomenological model fitted to LEP/SLD legacy data
T T T T T 14N
- »—% OPAL 1L ] N dx
; & sueen : ; e 1606.07737
X - 1 ) 3 DELPHI
S L L - b
b [ NLO+NLL+Kart. 2
{ HW tuned
- 4
1_PY\‘.\med I_‘A ] W
! \
oL T | .. =
0.2 0.4 0.6 0.8 1.0

X
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https://inspirehep.net/literature/559922
https://arxiv.org/abs/2102.08267
https://arxiv.org/abs/1606.07737

Heavy Flavour fragmentation

Recent measurements sensitive to b-quark fragmentation in ttbar production from ATLAS/CMS

O

Ratio to data

1/0 do/dz$h,

Sensitivity not huge, but can we use them to test LEP/LHC fragmentation universality?
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http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP-18-012/index.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-050/

Color-reconnection effect

e The model of color-reconnection effects is a large source of uncertainty in top mass measurements

@)

@)

New models have now been implemented in Pythia8 and are being considered for uncertainties

Run2 direct mass measurement from CMS has a ~0.4 GeV uncertainty from CR

e Measurements of charged particles in ttbar exists, but sensitivity to CR parameters not very large
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http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-17-008/CMS-TOP-17-008_Table_001.pdf
http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-17-015

O

O

O

Collective effects in pp

One of the surprising findings of the LHC is the presence of “collective effects” even in pp collisions
These are not included in standard MC generators
What is the possible impact for LHC pp physics

m Description of pile-up

m Particle composition of jets could affect detector response
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Summary

e Event generators remain the essential (and unavoidable) tool for LHC analyses

e  Successful analysis of Run1 and early Run2 thanks to the “NLO revolution”

e New developments are now needed to achieve the Run3 and HL-LHC precision targets

O

O

Matching to higher QCD orders (NNLOPS, NNLO merging?)

Coherent inclusion of higher EW orders in QCD matching/merging and in the shower
Higher accuracy parton showers which can be matched to NNLO

A better understanding of non-perturbative aspects (including PDFs)

Tuning with realistic uncertainties of soft/non-perturbative parameters

e And all of the above without impacting too much the experiments computing budget
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Thanks!
(and good luck!)
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ATLAS/CMS ttbar uncertainties

Systematic ATLAS CMS
Nominal PowhegPythia8
PDFs PDF4LHC recommendations

MC@NLO as cross-check but

NLO matching Powheg vs MC@NLO reweights top prto NNLO

7-point variations of ﬂ}g}d E, #};4 E
PS,ISR

initial Slate:Radiation + independent variations of hdamp, Hr

Final State Radiation Variations of ,uIl;S’FSR

Tune variations (A14/CP5)

Underlying Event + different CR models

Variations of rg parameter in Pythia8

B-fragmentation (CMS also compares to Peterson fragmentation)

Fragmeqtat{on/ Pythia8 vs Herwig? PythnaG VS H_erW|g++
Hadronisation (only impact on jet response)
ttbar/Wt interference DR vs DS in Powheg
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Negative Weights
MC@NLO-A

Modified MC@NLO (Bt hoep Propeiies) ™ Eegatiye weights stron‘gly reduce statistical power
_ ' or weighted events w;, (3, w;)? )
do@®® = (dg™O® — da(“‘”)., effective events Nerfor fraction  Nefr = i e N(1-2f)
ic®® — oo+ Y docoo -+ N of negative weights f. L
a=5,C,5C for 35% negative weights (common at for high jet-mulitplicity/ high pt)
& —3% 6 R = 9% effective events compared to w; = 1
A — 1 hard regions. A=+ Olag).-

L9

Analysis of a parton shower in the vicinity of the soft and collinear
regions allows to formulate a modified MC@NLO-matching
prescription that reduces the number of negative-weight events
CMS is testing this modified MC@NLO scheme

o involves adjusting Pythia interface in CMSSW

Sherpa 3.0 will have internal
features to reduce negative
weights as explained here

A Positive Resampler for Monte Carlo Events with Negative Weights
e Turns negative event weights into positive ones
® Preserves distributions
® Applied successfully to complicated process: W production at NLO + PS with multijet merging
o  Already discussed and plan to explore in CMS
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https://arxiv.org/abs/2002.12716
https://arxiv.org/abs/2005.09375
https://indico.cern.ch/event/932451/contributions/3981587/attachments/2090483/3512619/PositiveResampler.pdf
https://cds.cern.ch/record/2715727

