

Trench vs Column 3D simulations and comparison

G. KRAMBERGER

Trench - 3D detectors

- 55x55 μm² pixels
- 150 μm active thickness
- Collection electrode 135 μm deep

Column 3D - Measurements and simulations

Single square cell readout σ_{wf} at -20°C and 100V

- 25x25 μm -> ~13 ps
- 50x50 μm -> ~32 ps

for multiple cell connected together and inclined tracks even better time resolution can be achieved

• around 20-25 ps for $50x50 \mu m^2$ cell

Trench - 3D detectors

A. Lampis, 16th TRENTO workshop, 2021

The time resolution was found to be dominated by FE electronics σ_i ~18 ps The $\sigma_{\rm wf}$ (intrinsic time resolution) of was found to be ~14-15 ps with accurate analysis ~10 ps. The tails in distribution due to low field regions in the space between the pads.

The reduction cell size may not improve the time resolution σ_t as the σ_{wf} may not be the limiting factor to the total time resolution.

around 15 ps better time resolution than for similar cell size with 3D-columns.

Drawbacks of 3D (Capacitance and fill factor)

JSI Ljubljana

Slovenia

- Much larger capacitance of the trench design wrt. to column and planar (ASIC is crucial)
- At small cell sizes needed for superior timing resolution the fill factor can become a major issue:
 - > For column like the direction of the inclined tracks is not very important
 - For trench detectors the direction of tracks is crucial (detector design should be tailored to the application)

