MPGDs: GEM, Micromegas, THGEM, µRWell and other ongoing developments

overview, limitations and perspectives

Eraldo Oliveri, CERN EP-DT-DD, Gas Detector Development (GDD) team

ECFA Detector R&D Roadmap Symposium of Task Force 1 Gaseous Detectors, 29th April 2021

Let me start with disclaimers

- I will do my best to be representative of a wide community but I apologize that, despite the effort, I'm sure I will be surely biased by my personal experience...
- I will surely forget something, please do not hesitate to comment...
- ECFA... mostly EU focused... probably a mistake.. But ok, too late now...
- If you will find something cute in the next slides.. It's probably not me but some smart input received by a colleague... ok, if there will be something inadequate... it's probably me...

- Given the rich schedule of the day, I will not go into technical details here I may disappoint the
 expectations of the convenors (I apologize for this) but I will focus more on potential inputs for
 discussion/roadmap coming from R&D groups working with MPGD...
- Because of this I have slightly changed the title of the talk to...

R&D on MPGDs: GEM, Micromegas, THGEM, µRWell and other ongoing developments

overview, limitations and perspectives

Collecting inputs for potential discussions and for roadmap

Eraldo Oliveri, EP-DT-DD, Gas Detector Development (GDD) team

ECFA Detector R&D Roadmap Symposium of Task Force 1 Gaseous Detectors, 29th April 2021

Micro Pattern Gas Detector Family

- High Rate Capability
- High Gain
- High Space Resolution
- Good Time Resolution
- Good Energy Resolution
- Excellent Radiation Hardness
- Good Ageing Properties
- Ion Backflow Reduction
- Photon Feedback Reduction
- Large size
- Low material budget
- Low cost

•

RD51 collaboration Development of Micro-Pattern Gas Detectors Technologies

https://rd51-public.web.cern.ch/welcome

CERN

E. Oliveri | ECFA Detector R&D Roadmap Symposium of Task Force 1 Gaseous Detectors | 29th April 2021 Micro Pattern Gas Detector Technologies

- Up to MHz/mm² (MIP)
- Up to 10⁵-10⁶
- <100µm

m²

- In general few ns , sub-ns in specific configuration
- 10-20% FWHM @ soft X-Ray (6KeV)
 - % level sort of easy, below % in particular configuration

4

A large variety of applications

11.1. PARTICLE PHYSICS INSTRUMENTATION

Table 11.1: Summary of promising technologies and their possible specific detector applications to address experimental challenges of approved and future projects.

Technologies

 Solid state
 Gas
 Scintillator
 Noble liquid
 Cherenkov

Vertex / Challenges: high spatial resolution, high rate/occupancy, fast/precise timing, Tracker radiation hardness, low mass, 4D tracking.

Calorimeter Challenges: high granularity, radiation hardness, large volume, excellent hit timing, PFA/dual-readout capability, 5D imaging.

	Si sensors sampling	RPC ⁸ or MPGD ⁹ sampling	Tilc/fibers + SiPM sampl., homogeneous crystals (e.g. LYSO)	LAr sampling	Quartz fibers sampling in dual-readout	
--	------------------------	--	---	-----------------	--	--

Challenges: large area, low cost, spatial resolution, high rate.

PID / Challenges: high photon detection efficiency, large area photodetectors, TOF thinner radiator, timing resolution < 10 ps, radiation hardness.

uninner radiate	or, uming resolu	$uon \le 10 \text{ ps}, ra$	idiation nardnes	8.
LGAD	TPC, DC,			RICH ¹² ,
(timing)	MRPC ¹¹ (timing)			TOF ¹³ , TOP ¹⁴ ,
	(uning)			DIRC 15

Neutrino / Challenges: high photon detection efficiency, very large volume, radio Dark Matter purity, cryogenic temperature, large area photodetectors.

T	purity, cryoge	me temperature	, large area pho	todetectors.	
	Si, Ge	TPC	liquid scint., scint. tiles / bars	single/dual- phase TPC	water/ice - mPMT ¹⁶

9. Drift Tube

10. Multi-Wire Proportional Chamber

11. Multi-gap Resistive Plate Chamber

12. Ring-Imaging Cherenkov detector

16. multi-anode Photo-Multiplier Tube

13. Time-Of-Flight detector

Time-Of-Propagation counter
 Detection of Internally Reflected Cherenkov

- 1. (Depleted) Monolithic Active Pixel Sensor
- Low Gain Avalanche Detector
 (High Voltage High Resistivity) CMOS
- (High Voltage High Resistivity) C
 Time Projection Chamber
- Drift Chamber
- Scintillating Fiber tracker
- 7. Silicon Photomultiplier
- 8. Resistive Plate Chamber
- 9. MicroPattern Gaseous Detector

Physics Briefing Book Input for the European Strategy for Particle Physics Update 2020, CERN-ESU-004, http://cds.cern.ch/record/2691414/files/Briefing_Book_Final.pdf

Covering all specific detector applications.

Different applications = different needs..

Different developments complement each others toward a general enrichment of the technologies...

Probably the most exhaustive list I know...

LHC

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
ATLAS Muon System Upgrade: Start: 2019 (for 15 y.)	High Energy Physics (Tracking/Triggering)	Micromegas	Total area: 1200 m ² Single unit detect: (2.2x1.4m ²) - 2-3 m ²	Max. rate:15 kHz/cm ² Spatial res.: <100µm Time res.: = 10 ns Rad. Hard.: = 0.5C/cm ²	 Redundant tracking and triggering; Challenging constr. in mechanical precision:
ATLAS Muon Tagger Upgrade: Start: > 2023	High Energy Physics (Tracking/triggering)	µ-PIC	Total area: - 2m ²	Max.rate:100kHz/cm ² Spatial res.: < 100µm	
CMS Muon System Upgrade: Start: > 2020	High Energy Physics (Tracking/Triggering)	GEM	Total area: - 143 m ² Single unit detect: 0.3-0.4m ²	Max. rate:10 kHz/cm ² Spatial res.: ~100µm Time res.: ~ 5-7 ns Rad. Hard.: ~ 0.5 C/cm ²	- Redundant tracking and triggering
CMS Calorimetry (BE) Upgrade Start > 2023	High energy Physics (Calorimetry)	Micromegas, GEM	Total area: - 100 m ² Single unit detect: 0.5m ²	Max. rate: 100 MHz/cm ² Spatial res.: - mm	Not main option; could be used with HGCAL (BE part)
ALICE Time Projection Chamber: Start: > 2020	Heavy-Ion Physics (Tracking + dE/dx)	GEM w/ TPC	Total area: - 32 m ² Single unit detect: up to 0.3m ²	Max.rate:100 kHz/cm ² Spatial res.: ~300µm Time res.: ~100 ns dE/dx: 12 % (Fe55) Rad. Hard.: 50 mC/cm ²	- 50 kHz Pb-Pb rate; - Continues TPC readout - Low IBF and good energy resolution
TOTEM: Run: 2009-now	High Energy/ Forward Physics (5.3≤ eta ≤6.5)	GEM (semicircular shape)	Total area: – 4 m ² Single unit detect: up to 0.03m ²	Max.rate:20 kHz/cm ² Spatial res.: ~120µm Time res.: ~ 12 ns Rad. Hard.: - mC/cm ²	Operation in pp, pA and AA collisions.
LHCb Muon System Run: 2010 - now	High Energy / B-flavor physics (muon triggering)	GEM	Total area: ~ 0.6 m ² Single unit detect: 20-24 cm ²	Max.rate:500 kHz/cm ² Spatial res.: ~ cm Time res.: - 3 ns Rad. Hard.: ~ C/cm ²	- Redundant triggering
FCC Collider Start: > 2035	High Energy Physics (Tracking/Triggering/ Calorimetry/Muon)	GEM, THGEM Micromegas, µ-PIC, InGrid	Total area: 10.000 m ² (for MPGDs around 1.000 m ²)	Max.rate:100 kHz/cm ² Spatial res.: <100 µm Time res.: - 1 ns	Maintenance free for decades

Cylindrical MPGDs as Inner Trackers for Particle / Nuclear Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
KLOE-2 @ DAFNE Run: 2014-2017	Particle Physics/ K-flavor physics (Tracking)	Cylindrical GEM	Total area: 3.5m ² 4 cylindrical layers L(length) = 700mm R (radius) = 130, 155, 180, 205 mm	Spatial res:(r phi) - 250um Spat. res.(z) - 350um	- Mat. budget 2% X - Operation in 0.51
BESIII Upgrade @ Beijing Run: 2018-2022	Partcile Physics/ e+e- collider (Tracking)	Cylindrical GEM	3 cylindrical layers R ~ 20 cm	Max. rate: 10 kHz/cm ² Spatial res:(xy) = 130um Spat. res.(z) = 1 mm	- Material $\leq 1.5\%$ of X ₀ for all layers - Operation in 1T
CLAS12 @ JLAB Start: > 2017	Nuclear Physics/ Nucleon structure (tracking)	Planar (forward) & Cylindrical (barrel) Micromegas	Total area: Forward - 0.6 m ² Barrel ~ 3.7 m ² 2 cylindrical layers R ~ 20 cm	Max.rate: - 30 MHz Spatial res.: < 200µm Time res.: - 20 ns	 Low material budget : 0.4 % X0 Remote electronics
ASACUSA @ CERN Run: 2014 - now	Nuclear Physics (Tracking and vertexing of pions resulting from the p-antip annihilation	Cylindrical Micromegas 2D	2 cylindrical layers L = 60 cm R = 85, 95 mm	Max. trigger rate: kHz Spatial res.: ~200µm Time res.: ~ 10 ns Rad. Hard.: 1 C/cm ²	- Large magnetic field that varies from -3 to 4T in the active area
MINOS Run: 2014-2016	Nuclear structure	TPC w/ cylindrical Micromegas	1 cylindrical layer L=30 cm, R = 10cm	Spatial res.: <5 mm FWHM Trigger rate up to =1 KHz	- Low material budget
CMD-3 Upgrade @ BINP Start: >-2019 ?	Particle physics (z-chamber, tracking)	Cylindrical GEM	Total arear: - 3m ² 2 cylindrical layers	Spatial res: -100µm	\mathbf{O}
	E III				

MPGD Technologies for the International Linear Collider

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
ILC Time Projection Chamber for ILD: Start: > 2030	High Energy Physics (tracking)	Micromegas GEM (pads) InGrid (pixels)	Total area: - 20 m ² Single unit detect: ~ 400 cm ² (pads) ~ 130 cm ² (pixels)	Max. rate: <1 kHz Spatial res.: <150µm Time res.: - 15 ns dE/dx: 5 % (Fe55) Rad. Hard.: no	Si + TPC Momentum resolution : dp/p < 9*10-5 1/GeV Power-pulsing
ILC Hadronic (DHCAL) Calorimetry for ILD/SiD Start > 2030	High Energy Physics (calorimetry)	GEM, THGEM RPWELL, Micromegas	Total area: – 4000 m^2 Single unit detect: $0.5 \cdot 1 \text{ m}^2$	Max.rate:1kHz/cm ² Spatial res.: ~ 1cm Time res.: ~ 300 ns Rad. Hard.: no	Jet Energy resolution: 3-4 % Power-pulsing, self-

MPGD Tracking for Heavy Ion / Nuclear Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
STAR Forward GEM Tracker @ RHIC Run: 2012-present	Heavy Ion Physics (tracking)	GEM	$\begin{array}{l} Total \ area: - \ 3 \ m^2 \\ Single \ unit \ detect: \\ \sim 0.4 \ x \ 0.4 \ m^2 \end{array}$	Spatial res.: 60-100 µm	Low material budget:: < 1% X0 per tracking layer
Nuclotron BM@N @ NICA/JINR Start: > 2017	Heavy Ions Physics (tracking)	GEM	Total area: - 12 m ² Single unit detect: ~ 0.9 m ²	Max. rate: ~ 300 MHz Spatial res.: ~ 200µm	Magnetic field 0.5T orthogonal to electric field
SuperFRS @ FAIR Run: 2018-2022	Heavy Ion Physics (tracking/diagnostics at the In-Fly Super Fragment Separator)	TPC w/ GEMs	Total area:~ few m ² Single unit detect: Type I : 50 x 9 cm ² Type II: 50 x 16 cm ²	Max. rate:- 10^7 Hz/spill Spatial res.: < 1 mm	High dynamic range Particle detection from p to Uranium
PANDA @FAIR Start > 2020	Nuclear physics p - anti-p (tracking)	Micromegas/ GEMs	Total area: ~ 50 m ² Single unit detect: ~ 1.5 m ²	Max. rate: < 140kHz/cm ² Spatial res.: - 150µm	Continuous-wave operation: 10 ¹¹ interaction/s
CBM @FAIR: Start: > 2020	Nuclear Physics (Muon System)	GEM	Total area: 9m² Single unit detect: 0.8x0.5m²0.4m²	Spatial res.: <1 mm Max. rate: 0.4 MHz/cm ² Time res.: - 15ns Rad hard.: 10 ¹³ n.eq./cm ² /year	Self-triggered electronics
Electron-lon Collider (EIC) Start: > 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout Large area GEM planar tracking detectors	Total area: - 3 m ² Total area: - 25 m ²	Spatial res.: - 100 um (r¢) Luminosity (e-p): 10 ³³ Spatial res.: - 50-100 um Max. rate: - MH2/cm ²	Low material budget

MPGD Tracking Concepts for Hadron / Nuclear Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
COMPASS @ CERN Run: 2002 - now	Hadron Physics (Tracking)	GEM Micromegas w/ GEM preampl.	Total area: 2.6 m ² Single unit detect: 0.31x0.31 m ² Total area: - 2 m ² Single unit detect: 0.4x0.4 m ²	Max.rate:10°7Hz (-100kHz/mm²) Spatial res:70-100 μm (strip), ~120μm (pixel) Time res: 8 ns Rad. Hard:: 2500 mC/cm²	Required beam tracking (pixelized central / beam area)
KEDR @ BINP Run: 2010-now	Particle Physics (Tracking)	GEM	Toral area: ~0.1 m ²	Max. rate:1 MHz/mm ² Spatial res.: ~70µm	
SBS in Hall A @ JLAB Start: > 2017	Nuclear Physics (Tracking) nucleon form factors/struct.	GEM	Total area: 14 m ² Single unit detect. 0.6x0.5m ²	Max. rate:400 kHz/cm ² Spatial res.: ~70µm Time res.: ~ 15 ns Rad. Hard.: 0.1-1 kGy/y.	
pRad in Hall B @ JLAB Start: 2017	Nuclear Physics (Tracking) precision meas. of proton radius	GEM	Total area: $1.5m^2$ Single unit detect. 1.2x0.6m2	Max. rate:5 kHz/cm ² Spatial res.: ~70µm Time res.: ~ 15 ns Rad. Hard.: 10 kGy/y.	
SoLID in Hall A@ JLAB Start: -> 2020	Nuclear Physics (Tracking)	GEM	Total area: 40m ² Single unit detect. 1.2x0.6 m2	Max. rate:600 kHz/cm ² Spatial res.: ~100µm Time res.: ~15 ns Rad. Hard.: 0.8-1 kGy/y.	
E42 and E45 @JPARC Start: -2020	Hadron Physics (Tracking)	TPC w/ GEM, gating grid	Total area: 0.26m ² 0.52m(diameter) x0.5m(drift length)	Max. rate:10 ⁶ kHz/cm ² Spatial res.: 0.2-0.4 mm	Gating grid operation ~ 1kHz
ACTAR TPC Start: ~2020 for 10 y.	Nuclear physics Nuclear structure Reaction processes	TPC w/ Micromegas (amp. gap -220 µm)	2 detectors: 25*25 cm2 and 12.5*50cm2	Counting rate < 10^4 nuclei but higher if some beam masks are used.	Work with various gas (He mixture, iC4H10, D2)

MPGD Technologies for Photon Detection

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
COMPASS RICH UPGRADE Start > 2016	Hadron Physics (RICH - detection of single VUV photons)	Hybrid (THGEM + CsI and MM)	Total area: - 1.4 m ² Single unit detect: - 0.6 x 0.6 m ²	Max.rate:100 Hz/cm ² Spatial res.: <- 2.5 mm Time res.: ~ 10 ns	Production of large area THGEM of sufficient quality
PHENIX HBD Run: 2009-2010	Nuclear Physics (RICH – e/h separation)	GEM+CsI detectors	Total area: - 1.2 m ² Single unit detect: ~ 0.3 x 0.3 m ²	Max. rate: low Spatial res.: ~ 5 mm (rø) Single el. eff.: ~ 90 %	Single el. eff. depends from hadron rejection factor
SPHENIX Run: 2021-2023	Heavy Ions Physics (tracking)	TPC w/GEM readout	Total area: - 3 m ²	Multiplicity: dNch/dy - 600 Spatial res.: - 100 um (rø)	Runs with Heavy Ions and comparison to pp operation
Electron-Ion Collider (EIC) Start: > 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout + Cherenkov	Total area: ~ 3 m ²	Spatial res.: - 100 um (rø) Luminosity (e-p): 10 ³³	Low material budget
		RICH with GEM readout	Total area: ~ 10 m ²	Spatial res.: - few mm	High single electron efficiency

Maksym Titov, Conference Summary, 5th International Conference on Micro-Pattern Gas Detectors (MPGD2017), Temple University, Philadelphia,

Probably the most exhaustive list I know...

And thread experiences and the second								
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size)	Operation Characteristics / Performance	Special Requirements / Remarks			
ESS NMX: Neutron Macromolecular Crystallography Start: > 2020(for 10 y.)	Neutron scattering Macromolecular Crystallography	GEM w/ Gd converter	Total area: - 1 m ² Single unit detect: 60x60 cm ²	Max.rate: 100 kHz/mm ² Spatial res.: -500μm Time res.: - 10 us neff: - 20% efficient - γ rejection of 100	Localise the secondary particle from neutron conversion in Gd with < 500um precision			
ESS LOKI- SANS: Small Angle Neutron Scattering (Low Q) Start: > 2020(for 10 y.)	Neutron scattering: Small Angle	GEM w/ borated cathode	Total area: – 1 m ² Single unit detect: 33x40 cm ² trapezoid	Max.rate: 40 kHz/mm^2 Spatial res.: -4 mm Time res.: -100 us n. $-\text{eff.} > 60\% (at \lambda = 4 \text{ Å})$ $-\gamma$ rejection of 10° -7	Measure TOF of neutron interaction in a 3D borated cathode			
SPIDER: ITER NBI PROTOTYPE Start: - 2017(for 10 y.)	CNESM diagnostic: Characterization of neutral deuterium beam for ITER plasma heating using neutron emission	GEMs w/ Al-converter (Directionality - angular) capability)	Single unit detect: 20x35 cm ²	Max.rate: 100 kHz/mm ² Spatial res.: ~ 10 mm Time res.: ~ 10 ms neff: >10^-5 γ rejection of 10^-7	Measurement of the n- emission intensity and composition to correct deuterium beam parameters			
n_TOF beam monitoring/ beam profiler Run: 2008-now	Neutron Beam Monitors	MicroMegas µbulk and GEM w/ converters	Total area: ~ 100cm ²	Max.rate:10 kHz Spatial res.: .: -300µm Time res.: - 5 ns Rad. Hard.: no				

MPGD Technologies for Dark Matter Detection

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements Remarks
DARWIN (multi-ton dual-phase LXe TPC) Start: >2020s	Dark Matter Detection	THGEM-based GPMT	Total area: -30m ² Single unit detect. -20 x20 cm ²	Max.rate: 100Hz/cm ² Spatial res.: - 1cm Time res.: - few ns Rad. Hard.: no	Operation at ~1801 radiopure material dark count rate ~1 Hz/cm ²
PANDAX III @ China Start: > 2017	Astroparticle physics Neutrinoless double beta decay	TPC w/ Micromegas µbulk	Total area: 1.5 m ²	Energy Res.: ~ 1-3% @ 2 MeV Spatial res.: ~ 1 mm	High radiopurity High-pressure (10b Xe)
NEWAGE@ Kamioka Run: 2004-now	Dark Matter Detection	TPC w/ GEM+µPIC	Single unit det. ~ 30x30x41(cm ³)	Angular resolution: 40° @ 50keV	
CAST @ CERN: Run: 2002-now	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas µbulk and InGrid (coupled to X- ray focusing device)	Total area: 3 MM µbulks of 7x 7cm ² Total area: 1 InGrid of 2cm ²	Spatial res: ~100μm Energy Res: 14% (FWHM) @ 6keV Low bkg. levels (2-7 keV): μMM: 10-6 cts s-1keV-1cm-2 InGrid: 10-5 cts s-1 keV-1cm-2	High radiopurity, good separation of tracklike bkg. from X-rays
IAXO Start: > 2023?	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas µbulk, CCD, InGrid (+ X- ray focusing device)	Total area: 8 μbulks of 7 x 7cm2	Energy Res: 12% (FWHM) © 6keV Low bkg. Levels (1-7 keV): µbulk: 10-7cts s-1keV-1cm-2	High radiopurity, good separation of tracklike bkg. from X-rays

MPGD Technologies for Neutrino Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
T2K @ Japan Start: 2009 - now	Neutrino physics (Tracking)	TPC w/ Micromegas	Total area: ~ 9 m² Single unit detect: 0.36x0.34m²~0.1m²	Spatial res.: 0.6 mm dE/dx: 7.8% (MIP) Rad. Hard.: no Moment. res.:9% at 1 GeV	The first large TPC using MPGD
SHiP @ CERN Start: 2025-2035	Tau Neutrino Physics (Tracking)	Micromegas, GEM, mRWELL	Total area: ~ 26 m ² Single unit detect: 2 x 1 m ² - 2m ²	Max. rate: < low Spatial res.: < 150 µm Rad. Hard.: no	Provide time stamp of the neutrino interaction in brick"
LBNO-DEMO (WA105 @ CERN): Start: > 2016	Neutrino physics (Tracking+ Calorimetry)	LAr TPC w/ THGEM double phase readout	Total area: 3 m² (WA105-3x1x1) 36 m² (WA105-6x6x6) Single unit detect. (0.5x0.5 m2) -0.25 m²	WA1053x1x1 and 6x6x6: Max. rate: 150 Hz/m ² Spatial res.: 1 mm Time res.: - 10 ns Rad. Hard.: no	Detector is above ground (max. rate is determined by muon flux for calibration)
DUNE Dual Phase Far Detector Start: > 2023?		LAr TPC w/ THGEM double phase readout	Total area: 720 m ² Single unit detect. (0.5x0.5 m2) ~ 0.25 m ²	Max. rate: 4*10 ⁻⁷ Hz/m ² Spatial res.: 1 mm Rad. Hard.: no	Detector is underground (rate is neutrino flux)

MPGD Technologies for <u>X-Ray Detection and γ-Ray Polarimetry</u>

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation characteristics / Performance	Special Requirements/ Remarks
KSTAR @ Korea Start: 2013	Xray Plasma Monitor for Tokamak	GEM GEMPIX	Total area: 100 cm ² Total area: 10-20 cm ²	Spat. res.: - 8x8 mm ² 2 ms frames; 500 frames/sec Spat. res.: -50x50 µm ² 1 ms frames;5 frames/sec	
PRAXyS Future Satellite Mission (US-Japan): Start 2020 - for 2years	Astrophysics (X-ray polarimeter for relativistic astrophysical X-rays	TPC w/ GEM	Total area: 400 cm ³ Single unit detect. (8 x 50cm ³) ~400cm ³	Max.rate: ~ 1 lcps Spatial res.: ~ 100 um Time res.: ~ few ns Rad. Hard.: 1000 krad	Reliability for space mission under severe thermal and vibration condition
HARPO Balloon start >2017?	Astroparticle physics Gamma-ray polarimetry (Tracking/Triggering)	Micromegas + GEM	Total area: 30x30cm2 (1 cubic TPC module) Future: 4x4x4 = 64 HARPO size mod.	Max.rate: ~ 20 kHz Spatial res.: < 500 um Time res.: ~ 30 ns samp.	AGET developmen for balloon & self triggered
SMILE-II: Run: 2013-now	Astro Physics (Gamma-ray imaging)	GEM+µPIC (TPC+ Scintillators)	Total area: 30 x 30 x 30 cm ³	Point Spread Function for gamma-ray: 1*	
ETCC camera Run: 2012-2014	Environmental gamma-ray monitoring (Gamma-ray imaging)	GEM+µPIC (TPC+ Scintillators)	Total area: 10x10x10 cm ³	Point Spread Function for gamma-ray: 1*	

Maksym Titov, Conference Summary, 5th International Conference on Micro-Pattern Gas Detectors (MPGD2017), Temple University, Philadelphia

https://indico.cern.ch/event/581417/contribut ions/2558346/attachments/1465881/226616 1/2017_05_Philadelphia_MPGD2017-ConferenceSummary_25052017_MS.pdf

Impressive compilation.

Thanks Maxim....

Some update needed (table ref. to 2017) Please check if you are not there and send us the missing info

Today with several lessons learned in the context of large systems

THE UPGRADE OF THE ALICE TPC

<text><text><section-header><section-header><complex-block>

https://indico.cern.ch/event/911950/contribut ions/3876016/attachments/2061878/345911 7/2020_06_18_ALICE_TPC_2.pdf

https://indico.cern.ch/event/911950/contrib utions/3876019/attachments/2061863/3458 939/fsimone_GE11status_RD51.pdf

MICROMEGAS production status

M. Antonelli LNF-INFN for the ATLAS collaboration (nSW Team)

Summary on HV-stability for NSW-A chambers

NSW MM integration activities

https://indico.cern.ch/event/911950/contribut ions/3876018/attachments/2062109/345946 0/MMstatus_RD51.pdf

Future R&D...

Several topics ... many of them discussed during the day in more details...

Improving performances: rate, space resolution with limited number of channels, timing, high gain...

Resistive layers/electrodes: stability, space resolution, simple/single stage...

Large area MPGD/Si hybrid detectors ...

Optical readout, pixelated readout, electronics integration, Single electron sensitive TPC readout systems, ... Material budget, radiation hardness, minimized dead areas...

Gas mixtures, ions,...

New material: converters (secondary emitters, photocathodes), protection layers...

New manufacturing techniques for new structures and fast prototyping (etching, 3D,..)..

Simplified structures with simplified production processes..

Some inputs for potential discussions/comments...

Inputs/discussions from/with: Giovanni Bencivenni, Michele Bianco, Shikma Bressler, Gianluigi Cibinetto, Paul Colas, Klaus Desh, Esther Ferrer Ribas, Francisco Garcia Fuentes, Paolo Giacomelli, Diego Gonzalez Diaz, Paolo Iengo, Mauro Iodice, Jochen Kaminski, Bernhard Ketzer, Stefano Levorato, Thomas Papaevangelou, Emilio Radicioni, Lev Shekhtman, Fulvio Tessarotto, Harry van der Graaf, Joao Veloso, Piet Verwilligen

Several people I'm normally in contact with at CERN and in RD51

I apologize if not all in.. or if something has been erroneously ⁽ⁱⁱ⁾ distorted...

Input 1: Detector R&D groups / Recognition

- Hard to preserve knowledge and know-how, people, equipment, infrastructures,...
- Difficulties on being funded if not well attached to a project ...
- When attached to a project, sometime difficult to preserve the investment done because of a different project phases (moving from instance from R&D to "installation, commissioning, operation")...
- End of a project can be the end, i.e. everyone busy (lost) in new proposal/applications/calls...
- Difficulties on getting people and offering a perspective: not the best entry point for a career (*) –
 sometimes hard to get students or post-doc trained researchers have often to leave...

https://cds.cern.ch/record/2708708/files/2002.02837.pdf

(*) Early-Career Researcher (PHD and post-DOC) perception

Input 2: Steering processes should support creativity and flexibility...

Even though resources are limited, MPGD technologies should allow us to keep diversity and flexibility...

Important to optimize the way we do R&D more than the activities...

A well distributed dissemination of different technologies can boost creativity and offer the safest/best scenario to develop strategic technologies to their best ...

"Plan for sufficient flexibility.....even if impossible()"* E. Heijne , Perspectives on future development (TBC), ECFA Detector R&D Roadmap Symposium of Task Force 7 Electronics and On-detector Processing, <u>https://indico.cern.ch/event/1001692/</u>

Input 3 / R&D needs (I): New Technologies or New architectures

Different needs to be covered: risky / longer time scales / interdisciplinary support / going to unknown fields/tools.. for the first ... Easy/fast/efficient access to existing/known technologies/tools/infrastructures for the second one...

Input 3 / R&D needs (II): different R&D phases

Generic & Blue Sky R&D (generic/prototyping)

Project Driver R&D (prototyping/engineering)

freedom

If you ask

- Well defined.. requirements, conditions,
- Integration R&D (engineering) Normally a collaboration...

Normally some small/proto collaboration ...

Can be a small single group...

Each phase requires specific expertise and knowledge...

The groups associated to each phase have different needs.. Important to properly support all of them according to their needs...

Important to have proper overlapping between them and between the groups leading each phase...

Despite the fact that the role of the first one is crucial (development of new technologies, seed for the rest), it is often the harder one to support(*).

(*) Quoting E. Meschi, ECFA symposia TF7: "We don't know what to do with it... but if you will do it, we cannot stay without"

. 0 2

1996/1997

Input 4: Centers of excellence...

• You need years of experience to create R&D teams and laboratories...

- Fundamental in R&D and in training/formation of new generation of detector physicists.
- International responsibility to support and protect this and to prevent funding fluctuations killing precious heritages (you can attach to each of the previous lab fundamental R&D and key detector physicists...)

One example/Nikhef: Difficulties on preserving people/ activities despite the role played by the group in our field....

Input 5: Importance of R&D collaborations / Centralized Facilities...

International collaboration on MPGD Started in 2008 (white paper/CERN) Common facilities (lab/GDD, test beam/SPS) developments (simulation/electronics) and workshop (MPT) @ CERN

MPGD technologies spread over experiments (existing or planned)

EP-DT Detector Technologies

Technological developments often need large infrastructures

Micro Pattern Technology (MPT) workshop Research/Development/Production of MPGD

Thin Film and Glass lab

Irradiation Facilities

GDD Gas Detector **Development team** R&D on MPGD. **RD51 Support**

Strategic R&D on MPGD (large systems, novel solution, framework and tools)

E. Oliveri | ECFA Detector R&D Roadmap Symposium of Task Force 1 Gaseous Detectors | 29th April 2021 Micro Pattern Gas Detector Technologies

Gas

Group

Input 6: Future timelines & Knowledge Transfer

Timeline from Jorgen D'Hondt, Report from the ECFA chair, 15 Nov 2019

In project perspective you may not see all phases (R&D, installation, commissioning, operation)...

Maybe useful to explore as well detectors and technological perspectives (crossing projects funding)..

We should not "miss" experiments that can preserve the expertise and be a valid test-bench future experiments...

LHC Upgrades called back experienced team from first LHC detectors...

Preserve expertise and trained teams in these timescales...

We often learn/know how to build a proper detector system the day after the installation...

Input 7: Technology Transfer

Infrastructure – development, testing and production facilities Speaker: Rui De Oliveira (CERN)

- Key role played by CERN EP-DT MPT workshop
- Aspects covered by MPT:
 - A. New developments (MPGD structures and architectures)
 - B. Production for R&D
 - C. Production for experiments and large (large for us large but not for industry) volumes
- $C \rightarrow TT$ toward industry explored/done/ongoing...
- A & B (& C) \rightarrow consolidating cooperation and sharing with MPT workshop -
 - sharing between CERN & INFN of a DLC sputtering machine (costs and use sharing / personnel training)
- A & B → TT towards/between institutes & national laboratories workshops... (MPT/Saclay/LNF/ LNGS/FTD Bonn/... ? ...)

Micro Pattern Technology (MPT) workshop Research/Development/Production of MPGD

Relations with industry Speaker: Michele Bianco (CERN)	European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire AGREEMENT REFERENCE KÖGGGG (THE "AGREEMENT)			
with MPT workshop and use sharing / personnel training) oratories workshops	BETWEEN THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) AND Intituto Nazionale Di Pinica Nucleare (INFN) conceeding			
	The percease and operation of a Magnetidon Spectremor Deposition facility			
C.I.D: the joint CERN-INFN DLC facility				

Input 8: Fostering synergies (ECFA context: between Task Forces, Solid/Gas in this slide)

17.01.2019

Synergies successfully explored within MPGD technologies.. strongly done in the context of RD51 collaboration with common facilities (lab/beam/workshop) and tools (modelling/electronics)... To be fostered as well between different technologies (facilities, modelling, electronics,...) ...

Sharing of facilities/instrumentation: Timing/RD50 on RD51 timing telescope in beam @ H4/SPS

Acknowledgments

The authors would like to thank the RD51 and PICOSEC collaborations for the possibility to participate in the May and August 2018 beam tests. We are particularly grateful to Eraldo, Paco, and Lukas. We would like to thank Francisco for the coating of the detectors and PCB.

M. Centis Vignali

APDs Beam Tes

Sharing of tools (modelling): LGAD (Si) & micromegas (gas) almost identical concept/signal formation

Ongoing activity (Cartiglia/Riegler) EP-RD DOCT (D. Janssens) on signal induction with garfield++ (H. Schindler) and time dependent weighting fields.

E. Oliveri | ECFA Detector R&D Roadmap Symposium of Task Force 1 Gaseous Detectors | 29th April 2021 Micro Pattern Gas Detector Technologies EP R&D

Conclusion (I)

- Micro Patter Gas Detectors cover an impressively wide spectrum of applications (thanks to the large variety of solutions (technologies/architectures) that can be integrated together)...
- Large area detection systems realized today with MPGD technologies (LHC upgrades)...
- Future R&D lines... wide scenario: improving performances, stability, developing innovative solutions, hybrids solutions, implementing new technologies, new manufacturing techniques, simplifying production/assembly...

Conclusion (II)

- Recognition for detector R&D groups:
 - Big difficulties on funding... in particular for generic/blue sky R&D...
 - In case of project driven activities, it is sometime hard to preserve what achieved (project phase)...
 - Huge time/efforts on proposal/applications/calls...
 - Hard to get students/post doc and offer them a perspective...
- Steering/Coordination/Efficiency... creativity/flexibility to be preserved
- All different R&D needs (new technologies/new architectures, generic/project/integration) to be identified/covered
- Centers of excellence.. A common patrimony (not local) to be preserved... fundamental in R&D & training...
- Centers of excellence / collaborations / centralized facilities (MPGD@CERN: experiments, RD51, EP-DT (MPT, TFG, GIF++, GDD), EP-RD) fundamental in K&T transfers/synergies
 - Knowledge Transfer (to cope with timelines of future experiments)
 - Technology Transfer (to cope with R&D and production)
 - Synergies (common infrastructures/facilities/tools/...)
- Last input: 50% if TF1 symposia contribution from Italy/Italians... maybe useful to elaborate this

home.cern