Pld: TPC, TRD, RICH and
other large area detectors
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disclaimer

e Given the limited available time, | will only mention a few examples,
without the intention of diminishing the many possible alternative
ones.

* Rather than pretending to give an exhaustive list, examples are there
to illustrate a concept.

* A synthesis of such a vast field is not obvious, so | have tried to
identify a few themes.



Drift electrode

End-cap MWPCs
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Dnft Cathode /

* TPCs have gone through a revolution in the last ~ 15 years, « =~ |
often linked to the use of MPGDs in the amplification stage =/ ==

* MPGDs have allowed far more design freedom, and helped
solve a number of long-standing limitations like
* reduce pad-angle, track-angle, ExB effects
* make a far smaller Pad Response Function (PRF) possible
* drastically reduce the IBF in continuous (non-gated) operation
e geometrical freedom (e.g. curved readouts)

* Pad planes have gone through the same metamorphosis,
achieving much smaller structures, and matching the
smallest PRFs

* Resistive layers can now help us to protect from spark, tune e
the PRF, etC | Resistive Foil ~50um

Insulator ~200um
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ALICE TPC

New Readout Chambers (GEM):

*< 1% IBF to allow continuous operation @ = 50 KHz Pb-Pb

* Pld performance via dE/dx preserved by fine tuning of the 4-GEM
configuration (geometry and HV) to optimize IBF and energy resolution
at the same time

e Confirmed with several test beams at CERN/PS
* Energy resolution compatible with MWPC TPC (~5.5% in pp and ~7% in

pad plane
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dE/dx and dN_/dx

dE/dx resolution around 5% are routinely reached, in excellent conditions and

with accurate calibration. It relies on truncated mean techniques, or max
likelihood.
The dependency on P has not been exploited much since the first TPC
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Lehraus plot: 5.4% typical dE/dx resolution for
1m-bar track length. No significant change since
1983, i.e. since the first TPC

‘ ‘ * interestin the P term is renewed where excellent Pld is

needed together with a large mass of gas (TPC-as-a-target)

multi hadronic tracks

® single isolated tracks

— Fitto 2021 data (25 detectors) Possibly in combination with optical readout, two issues require a
==+ Fit by Lehraus 1983 (14 detectors) freSh IOOk
1 1 1 * suitable (modern) gas mixtures for high-P operation

effective detector length L (m * bar) * light pressure-containment vessels



dE/dx and dN_/dx

dN_/dx resolution is potentially better than dE/dx. Cluster counting requires fast electronics and
sophisticated counting algorithms, or alternative readout methods. It has the potential of being less
dependent on other parameters — however certain gasses (He, Ne) are better suited than others (Ar) due

to their primary ionization characteristics
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how to identify clusters and achieve dN/dx?

in time in space

* challenging fast-shaping electronics ¢ GridPix-like readout

(~ ns needed) * the extreme pixelization reveals the

* de-couple the charge collection ung e e e
from the cluster counting
altogether

e - optical, with ~(sub)ns continuous

» Timepix hits

—— Telescope track
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TRDs

* TRDs are (and will be) ubiquitous: ATLAS, ALICE, AMS ...

* Gas TRDs are considered a mature instrument for Pld at high
energies.

The limitation of the gaseous detectors are related to the
electron diffusion and photo/delta-electron production in the
active gas. It is difficult to obtain a TR cluster size on the anode
plane (gor along the particle track) below few mm

* Due to the very small TR emission angle, the TR signal generated
in a detector is overlapping with the ionization due to the specific

grEw%gy loss dE/dx and a knowledge (and proper simulation) of
X

* Advantage: dE/dx improves Pld at low momentum, and tracking A S W
information is provided. The problem is how to separate the TR
radiation and the ionization process.

e > Simulation is of prime importance
 GEMs are making their way in the technique
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* an attempt has been made to improve cluster counting by
means of a GridPix. Some improvement is possible, although
not drastic.

be reached by
differentiating the response o

to X-ray photons and to N
particle ionization B e
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* Extensive R&D required!




Ring Imaging Cherenkov

* from gas conversion, to Csl converters to MPGD
structures

* addressing one after the other a number of
Issues:
* long recovery time
* photon feedback
* |IBF and photocathode aging by ion bombardment
* low gain needing slow electronics, limited rate

* MPGDs changed the rule of the game addressing
several issues at the same time
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Compass RICH

e Hybrid approach, with Csl-coated THGEM and
bulk MicroMegas allowed to reach

* Years of R&D and careful production &
assembly have allowed
* high gain
* high rate
* single photoelectron efficiency
e excellent angular resolution

e Where from here?

* new photocathode materials (DLC, nano-diamonds
with better Q.E. and less prone to ion damage

* IBF

* (see for more details later talks by Stefano and
Fulvio)
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Summary

» dE/dx in TPCs: pressure and alternative approaches
e appropriate gas mixtures for hi-P operation
* light vessels to mitigate the amount of X,

e optical readouts, including image-intensified TimePix
* IBF

* dN/dx: not new, but renewed interest
 special readouts: fast pre-shaping, or alternatives (optical / GridPix)
 specific gas mixtures

* TR detectors
* new approaches (dN/dx or enhanced gamma tagging)
* most important: simulation tools

* CH detectors
* new materials for photocathode
* further addressing IBF



