Optical readout, novel readout electrodes, hybrids with ASICs

F. M. Brunbauer (CERN GDD)

April 29, 2021 - ECFA Detector R&D Roadmap Symposium - TF1 Gaseous Detectors

Pixellated readout

High granularity pixellated sensors for detailed visualisation and reconstruction of particle tracks and imaging applications

Taking advantage of state-of-the-art imaging sensors and readout ASICs

- **Optical readout with imaging sensors**
- Hybrid readout (optical + electronic) ۲
- Pixellated readout ASICs •

Thank you for all contributions, comments and discussions to E. Baracchini, A. Deisting, T. Fujiwara, H. van der Graaf, J. Kaminski, J. Leidner, D. Loomba, P. Majewski, F. Murtas, T. Papavangelou, D. Pinci, E. Pollacco, F. Resnati, ... and many others!

Bubble chamber

Interaction in a liquid hydrogen bubble chamber at the Berkeley Bevatron accelerator.

Optical scintillation light readout

Requirements

Optimised matching of pixel size to amplification structure High QE and low noise characteristics Fast readout (frame-based / hit-based)

Optical readout

Image immediately available without need for reconstruction.

Two acquisition approaches:

- Integrated imaging collects all light within exposure time without deadtime with long exposure time
- Event-by-event recording with short exposure time for track reconstruction

High gain MPGDs

Lenses, mirrors intensifiers, (tapered) fibers, Microlenses

10.1016/j.apsusc. 2018.01.253

photonis.com

Imaging sensor (camera)

CCD, CMOS, ASICs

X-ray radiography (Glass GEM)

F. Brunbauer et al., Kadiation muaym with glass Micromegas, <u>https://</u> doi.org/10.1016/j.nima.2019.163320

ontributions/2556685/ 017, <u>https://indico.cern.ch/event/581417/c</u> <u>9/2262562/MPGD2017_fujiwara.pdf</u>

Optically read out MPGDs

Different MPGD technologies have been used with optical readout for maximising spatial resolution (imaging), low pressure operation (glass GEM) and for detailed studies of detector physics.

Integration on transparent substrate (ITO-coated glass) for optical light transmission.

High gain (light yield) amplification **matched** with **pixel size** of imaging sensor

GEMs

THGEMs

Long amplification region for e.g. low pressure operation Variants: GlassGEM, MM,THGEM, ...

Glass substrates → other MPGDs

MPGD development and detector physics studies

THCOBRA

CCD / CMOS imaging sensors

Modern scientific imaging sensors with **low read noise** and high resolution are well-suited for optical readout.

Intuitive and simple to use with images directly available without need for reconstruction

Frame rates of typically **10s to 100s of fps** impose integrated imaging approach

Resolution of CCD/CMOS imaging sensors well suited for MPGD readout (compatible with size scale of amplification structures).

Advances in imaging sensors will offer potential for increased performance of detectors:

- Higher frame rates -> decrease event pile-up, depth imaging
- Larger sensors (larger pixels at high granularity) -> higher sensitivity
- Low noise (<1 e-) or amplification
- Extended **spectral sensitivity**

QImaging Retiga R6, Thorlabs 8 MP Scientific CCD Cameras

CCD cameras

- Moderate QE, higher read noise
- · Low rate (≈tens Hz)

Exemplary specifications

- 6 MP sensor (2688 x 2200)
- $4.54 \times 4.54 \mu m^2$ pixels size
- 5.7 e- read noise

sCMOS cameras

- Low read noise
- ≈100 Hz frame rate

Exemplary specifications

- 5.3 MP sensor (2304 x 2304)
- 6.5x6.5µm² pixels size
- 0.7 e- read noise

Hamamatsu ImageEM X2, ams technologies iXon

EMCCD cameras

- Limited resolution
- Internal gain, very high sensitivity

Exemplary specifications

- 1 MP sensor (1024x1024)
- 16x16µm² pixels size
- <1 e- read noise

Hamamatsu ORCA-Fusion, Andor Zyla

Scintillation spectra

Reading out secondary scintillation light emitted during electron avalanche multiplication

Emission spectra and quantum efficiency of imaging sensors impose limits on choice of gases: **CF₄** or **wavelength shifting** to VIS.

Alternative gases compatible with spectra sensitivity of imaging sensor?

Extension of **spectral sensitivity** to lower wavelengths for better performance in CF₄ based mixtures (UV band enhanced at low pressure) and alternative scintillating gases / wavelength shifters (TMA, TEA).

Secondary scintillation spectra of

6

Optical TPCs

Long history of optically read out Time Projection Chambers

Detailed **2D projections** (energy loss, head/tail) from camera need auxiliary timing for 3D reconstruction

D. Gonzalez Diaz: <u>Recoil imaging for DM, neutrino, and BSM</u> physics applications (TPCs variations, optical readout)

Z determination with PMT waveform

L.M.S. Margato et al., Performance of an optical readout GEM-based TPC, NIM A, 2004

Fonte P., Breskin A., Charpak G., Dominik W. & Sauli F. (1989) NIM A. 283, 3, p. 658-664.

M. Pomorski et al. DOI: 10.1103/PhysRevC.90.014311

Depth reconstruction techniques

Depth information can be extracted from fast photon detectors (PMT, SiPM) for 3D track reconstruction

Limited granularity in fast photo detectors may enable more accurate reconstruction of particle trajectories

E. Erdal et al.. (2018). First Imaging Results of a Bubble-assisted Liquid Hole Multiplier with SiPM readout in Liquid Xenon.

- clusters

- Single waveform scintillation light
- Shape of signal used for determination of depth extent and energy loss profile

Silicon Photomultipliers (SiPMs)

Arrays of SiPMs to reconstruct

Fast timing response can enable operation in higher rate environments and 3D tracking with known to timing signals

Linearly Graded Silicon **Photomultipliers (LG-SiPMs)**

- Current split in four outputs to calculate x and y coordinates from current signals
- Position resolution down to order \bullet of size of microcells (30µm)
- Fast response time of tens of ns

Depth reconstruction techniques

Fast drift velocity in CF4 mixtures (e.g. >10 cm/ μ s in Ar/CF4) make sub-mm scale depth resolution challenging

Alternative techniques for exploiting information in images and adding precise **auxiliary timing information**:

Matching of clusters in light intensity profile from image and in PMT waveforms for Z-determination

Exploit diffusion (amplitude) vs. width of charge cloud) to determine drift distance

D. Pinci et al., CYGNO: Triple-GEM Optical Readout for Directional Dark Matter Search, MPGD 2019 https://indico.cern.ch/event/757322/contributions/3396494/attachments/1841021/3018431/Cygno_MPGD19.pdf

Combined 2D **image** with timing information from **electronic readout** from e.g. transparent strip anode with ITO

Optical TPCs

D. Pinci et al., CYGNO: Triple-GEM Optical Readout for Directional Dark Matter Search, MPGD 2019

P. Majewski, RD51 Mini-Week 2020, https://indico.cern.ch/event/872501/contributions/3730586/attachments/ 1985262/3307758/RD51 mini week Pawel Majewski ver2.pdf

https://next.ific.uv.es/next/experiment/detector.html L. Arazi, Status of the NEXT project, https://doi.org/10.1016/j.nima.2019.04.080

10

Negative ion TPCs

Negative ion drift may be promising for suppressing **transverse diffusion** down to thermal limits.

Very **low drift velocities** can allow for 3D reconstruction from image sequences recorded at kHz frame rates.

Negative ion mixtures strongly **suppress light yield** and achievable **gain**.

Alternative NI gas mixtures with suitable scintillation yield, **high-gain MPGD** geometries?

approaching thermal limits

1.25

0.75

0.5

P02012

-...Thermal SF_e 20 Torr

SF_c 30 Torr

SF_c 40 Torr

P02012 https://doi.org/

10.1088/1748-0221/12/02/

400

N.S. Phan et al 2017 JINST 12

600

Electric Field (V/cm)

(a) SF_6 diffusion

(mm)

ъN

SF₆

0 0 ⁰

800

1000 1200

Gain demonstrated in atmospheric pressure He/CF4/SF6

E. Baracchini et al., CYGNO INITIUM, ERC No 818744

150 Torr CF₄ + 5.9 Torr CS₂, **σ ~ 150 um** D. Loomba, UNM

GridPix NI TPC readout

C. Ligtenberg et al., https://indico.nikhef.nl/event/ 2372/contributions/5576/subcontributions/225/ attachments/2601/3036/NITPC_paper_v0612pdf

Ultra-fast imaging sensors

High-speed CMOS sensors can deliver up to **1 million frames per second** at limited resolution. Can be used for rapid imaging (integrated imaging limited by incident radiation) flux) and beam monitoring with active feedback.

Rapid radiation imaging or **beam monitoring** already feasible (kHz at megapixel resolution).

3D track reconstruction (NI?) requires lower read noise sensors and increased resolution at maximum frame rates.

Image adapted from: B. Pogue, Nature 516 (2014) 46-47

Phantom v2512

- 1 megapixel **CMOS** sensor
- **25 kfps** at 1280 x 800
- **1 Mfps** at 128x32 \bullet
- Higher read noise

Sequence of images displaying alpha track segments in gaseous TPC recorded at 700 kHz.

Applications

Cluster counting for energy loss measurement

Classical energy loss measurement

Energy loss represented by pixel value intensities e.g. alpha track energy loss profile

L.M.S. Margato et al., Performance of an optical readout GEM-based TPC, NIM A, 2004

Cluster counting

Cluster counting may provide superior energy loss resolution

High granularity and low **diffusion** (NI, deconvolution?) required to distinguish clusters.

Cluster structure along electron track

Dose imaging & beam monitoring

Beam monitoring & hadron/neutron therapy applications benefit

Moderate area coverage with high granularity and high dynamic range.

Radiation hardness of imaging sensors / readout ASICs and frame rate for live feedback applications?

Timepix

Particle-tracker and **photon counting hybrid pixel detector** designed with the support of the Medipix collaboration

Basis for Timepix cameras, GridPix, GEMPix, ...

Timepix 4:

- 4-side buttable, data-driven ASIC with 512x448 pixel
- <200ps timing resolution \bullet
- up to **11.8k fps** full-frame readout rate \bullet

Applications:

- High-rate pixel telescope
- Time-of-flight mass spectrometry lacksquare
- Sub-pixel resolution imaging
- X-ray radiography at synchrotrons
- Neutron time-of-flight imaging
- Compton cameras
- Gamma and neutron imaging

• . . .

https://medipix.web.cern.ch/home

X. Llopart, Medipix4 Collaboration, https://indico.cern.ch/event/876275/contributions/3729426/attachments/1986038/3309319/Xavi_Timepix4_Muon.pdf

\frown
S
<u> </u>

		Timepix3 (2013)	Timepix4 (201	
nnology		130nm – 8 metal	65nm – 10 met	
el Size		55 x 55 μm	55 x 55 μm	
el arrangement		3-side buttable 256 x 256	4-side buttable 512 x 448	
sitive area		1.98 cm ²	6.94 cm ²	
Data driven (Tracking)	Mode	TOT and TOA		
	Event Packet	48-bit	64-bit	
	Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mn	
	Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixe	
	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-	
Frame based	Frame	Zero-suppressed (with pixel addr)	Full Frame (without pix	
(IIIIdBIIIB)	Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm	
energy resolut	ion	< 2KeV	< 1Kev	
binning resolu	tion	1.56ns	195ps	
dynamic range		409.6 µs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 4	
dout bandwidtl	n	≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10	
get global minim	num threshold	<500 e ⁻	<500 e ⁻	
	anology el Size el arrangement sitive area Data driven (Tracking) Frame based (Imaging) energy resoluti binning resoluti binning resoluti dynamic range dout bandwidth get global minim	anology el Size el size el arrangement sitive area Data driven (Tracking) Data driven (Tracking) Adva rate Max rate Max rate Max Pix rate Max Pix rate Max Pix rate Max count rate Frame based (Imaging) Frame based Imaging) Adva count rate Max count rate Max count rate	Timepix3 (2013)nology130nm – 8 metalSize55 x 55 µmsize3-side buttable 256 x 256sitive area1.98 cm²Data driven (Tracking)ModeTOTEvent Packet48-bitMax rate0.43x10 ⁶ hits/mm²/sMax Pix rate1.3 KHz/pixelFrame based (Imaging)ModePC (10-bit) and iTOT (14-bit)Frame based (Imaging)FrameZero-suppressed (with pixel addr)Max count rate~0.82 x 10 ⁹ hits/mm²/sInining resolution< 2KeV	

3.5x 33% $1^2/s$ bit) l addr) **2**x 0MHz) 4)).24 Gb<mark>&2X</mark>

14

Timepix cameras

Optical MCP image tube with quad Timepix with bi-alkali photocathode

Event counting with threshold or time of arrival recording

J Vallerga et al 2014 JINST 9 C05055 https://iopscience.iop.org/article/10.1088/1748-0221/9/05/C05055/pdf

TPX3CAM Optical detector for **time** stamping (1.6ns) of optical photons up to 80 Mhits/s rate. Commercially available.

https://www.amscins.com/tpx3cam/

200

MARS bio imaging

Spectral imaging with Medipix3 chip Can enable imaging of biochemical and physiological processes and increase efficiency of radiology procedures

https://medipix.web.cern.ch/marsbio-imaging

3D track reconstruction Intensified TPX3Cam

Readout of S2 scintillation in **dual phase TPC**

Light production with THGEM / GlassGEM in avalanche mode

TPB wavelength shifter and VIS photocathode or direct VUV imaging with UV photocathode on intensifier

A. Roberts, ARIADNE, arXiv:1810.09955v3

https://indico.cern.ch/event/989298/contributions/4217751/attachments/2190565/3702236/RD51%20Optical%20readout.pdf

Time-over-threshold (ToT)

Time-of-arrival (ToA)

Next step: 2m x 2m test with large field of view and direct VUV imaging

GridPix

Micromegas on Timepix ASIC

- Bump-bond pads used for charge collection
- CMOS-ASIC designed by the Medipix collaboration
- GridPix based on Timepix 3:
 - 256×256 pixels with $55 \times 55 \ \mu m^2$ per pixel
 - Charge (ToT) and time (ToA) information with 1.56ns time resolution

QUAD module with fill factor of 68.9%

J. Kaminski et al. NÌM A535 (2004) 506-510 NIM A845 (2017) 233-235

Proposed applications

IAXO/CAST: Low background, high spatial resolution, high energy resolution: $\sigma E/E=3.95\%$

ILD-TPC: To fulfil < 100 μ m spatial resolution and \approx 5% dE/dx resolution with small pads for low occupancy

Applications for

- Neutron TPCs
- X-ray Polarimetry
- Small area directional dark matter detectors

GEMGrid: InGrid on solid layer TwinGrid: stacked grids Timepix4?

J. Leidner et al. https://doi.org/10.3390/app11010440

GEM + Timepix ASIC

- Four naked Timepix read out with FPGA-based FITPix
- **Dose distribution imaging**, beam profile measurements for **hadron therapy** and micro dosimetry are potential applications
- Limited in area $(2.8 \times 2.8 \text{ cm})$ by Timepix ASICs -> tiling with Timepix4 feasible

3D dose visualisation of carbon ion beam

- **TFT backplane** compatible with scaling up to 20cm x 20cm but slow readout
- Optical readout: **optical photo** detectors (OPD) on top of TFT sensitive to scintillation light (poor resolution)
- Electronic readout: no OPD and direct charge readout from TFTs

Proton track

Challenges and summary

High-gain MPGD technologies and optimal matching of amplification structure and pixel size

Sensor sensitivity: large sensors with low read noise, inherent amplification

Scintillation emission spectra

- **Gas choice** may be driven by physics and not ideal for imaging sensors
- Alternative gases, **WLS**
- Extended **VUV sensitivity** of imaging sensors

Depth information in OTPCs

- **Combined** optical+charge readout, exploiting PMT waveforms, **SiPMs arrays**? Ultra-fast imaging?
- **Negative ion** TPCs for superior diffusion characteristics

Readout speed

- Ultra-fast optical readout with Mfps, data rates and volumes
- **Data-driven** readout ASICs with <ns time resolution

Equipping large areas

- **Optics** / sensors: low geometric acceptance at **large focusing lengths**
- **Tiling** of readout ASICs with minimal dead area, cost

Radiation hardness of sensors

Pixellated readout approaches (optical, hybrid, ASICs) offer unprecedented levels of detail in recorded events. 19

 \mathbf{e}

