

Introduction to Grid Application Development

Vangelis Floros (efloros@cern.ch) Application Support Team NCSR "Demokritos", Institute of Nuclear Physics

www.eu-egee.org

Acknowledgments

- Portion of slides (derived from those) prepared by:
 - Mike Mineter, NESC
 - Charles Loomis, LAL-Orsay
 - Roberto Barbera and his GILDA team University of Catania and INFN
 - EGEE-II NA4 Activity Member's

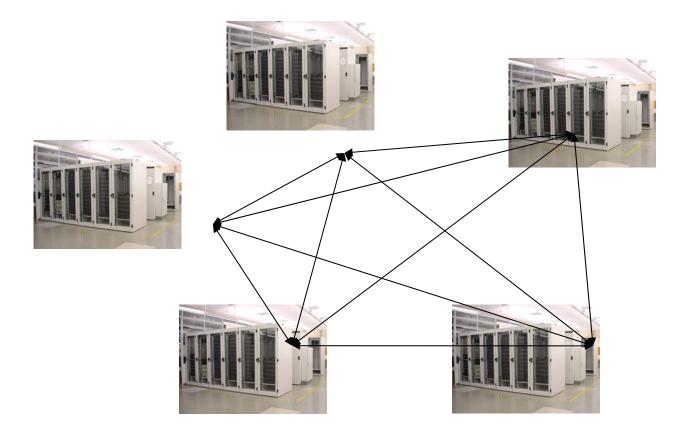
Contents

- Basic Concepts
- Types of Grid Applications
- Challenges

Definition, lan Foster

"Grid computing is coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations" (I.Foster)

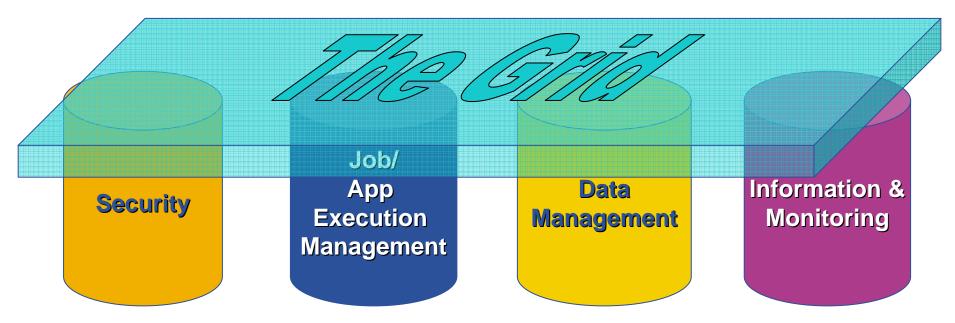
A Virtual Organisation is:


- People from different institutions working to solve a common goal
- Sharing distributed processing and data resources

Focus: Wide area, collaboration, virtual organisations

Practical definition in some areas

Enabling Grids for E-sciencE



Grid Computing == Clustering Clusters; Building a global batch submission system ...

- Basic Concepts
- Types of Grid Applications
- Challenges

The four pillars of Grid Computing

- Authentication
- Authorization
- Confidentiality
- Integrity
- VO management

- Remote execution
- Load balancing
- Interactivity
- Parallelism
- Workflows

- Data staging
- Bulk data transfers
- Replication
- Metadata

- Resource discovery
- Events & Notifications
- Resource status& monitoring

Grid Application Development

- Application development in the Grid implies the exploitation of APIs, tools and environments that provide the four basic Grid capabilities order to perform complex tasks and achieve diverse goals.
- The extend and approach that the four basic Grid concepts are materialized depends on the specific capabilities of the Grid enabling technologies (in our case the gLite middleware suite)

The vital layer

Where computer science meets the application communities!

VO-specific developments built on higher-level tools and core services

Makes Grid services useable by non-specialists


Grids provide the compute and data storage resources

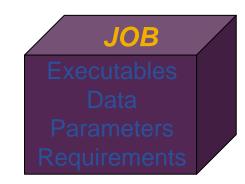
Production grids provide these core services.

gLite Grid Middleware Services

Enabling Grids for E-sciencE

Authorization
Auditing
Authentication
Security Services

Information & Application
Monitoring Monitoring


Information &
Monitoring Services

Package Job Metadata File & Replica Accounting Provenance Manager Catalog Catalog Storage Workload Data Computing Connectivity Element Movement Management Element **Workload Mgmt Services Data Management**

The Job concept

- gLite follows the job submission concept for application execution and resource sharing
- A job is a self contained entity that packages and conveys all the required information and artifacts for the successful remote execution of an application.
 - Executable files
 - Input/Output data
 - Parameters
 - Environment
 - Infrastructure Requirements
 - Workflows

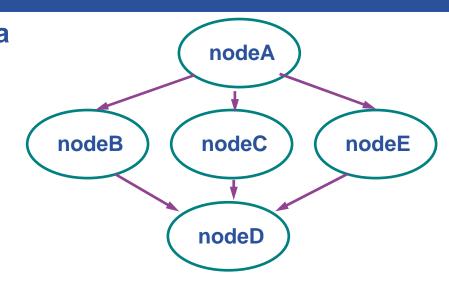
Described using the Job Description Language (JDL)

Complexities of grid jobs

1. Simple jobs – submitted to WMS to run in batch mode

2. Job invokes grid services

- To read & write files on SE
- Monitoring
- For outbound connectivity (interactive jobs)
- To manage metadata
- •


3. Complex jobs

- An environment controls multiple jobs on users' behalf
 - High-level services
 - Portals with workflow
 - Software written for the VO (or by the user)
 - •

Complex Workflows

- Direct Acyclic Graph (DAG) is a set of jobs where the input, output, or execution of one or more jobs depends on one or more other jobs
- A Collection is a group of jobs with no dependencies
 - basically a collection of JDL's

- A Parametric job is a job having one or more attributes in the JDL that vary their values according to parameters
- Using compound jobs it is possible to have one shot submission of a (possibly very large, up to thousands) group of jobs
 - Submission time reduction
 - Single call to WMProxy server
 - Single Authentication and Authorization process
 - Sharing of files between jobs
 - Availability of both a single Job Id to manage the group as a whole and an Id for each single job in the group

Pragmatic approach to Grid application development

- Benefits and Restrictions.
- Potential compromises
- Resource sharing (no dedicated resources)
- Explicit and implicit collaboration (working in shared environment)
- Security risks (yes there are!)
- Performance compromises (wrt system responsiveness. Some times too much middleware!)
- Application Models (the application may have to adapt to the grid and not vice versa)

- Basic Concepts
- Types of Grid Applications
- Challenges

Gridification Levels

- No development. Wrap existing applications as jobs.
 No source code modification is required
- Minor modifications. The application exposes minimal interaction with the grid services (e.g. Data Managements)
- Major modifications. A wide portion of the code is rewritten to adopt to the new environment (e.g. parallelization, metadata, information)
- Pure grid applications. Developed from scratch.
 Extensively exploit existing grid services to provide new capabilities customized for a specific domain (e.g. metadata, job management, credential management)

Application Programming Interfaces

Enabling Grids for E-sciencE

An **Application Programming Interface** (**API**) is the <u>interface</u> that a computer system, library or application provides in order to allow requests for services to be made of it by other computer programs, and/or to allow data to be exchanged between them.

Classic APIs

- Static compilation
- Shared libraries
- Need access to static or dynamic libraries

Web Service Interfaces

- The programmer may generate Web Service stubs and develop new clients from scratch
- Libraries are comprised of precompiled Service clients
- Need access to Web Services
 WSDL

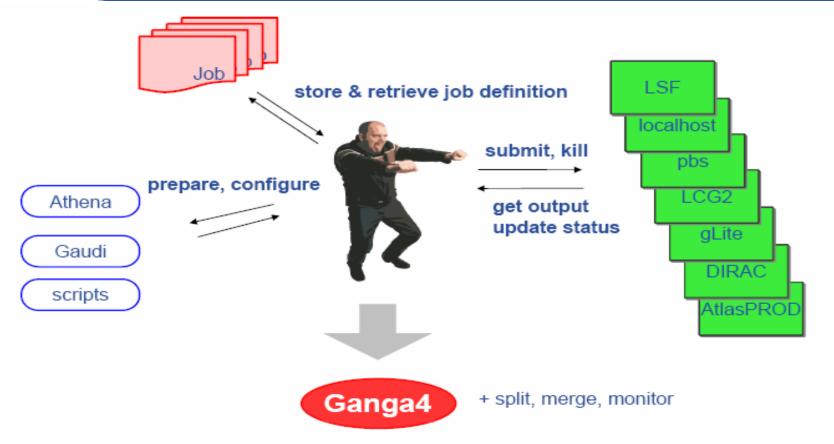
Invocation of applications

Enabling Grids for E-sciencl

From the UI

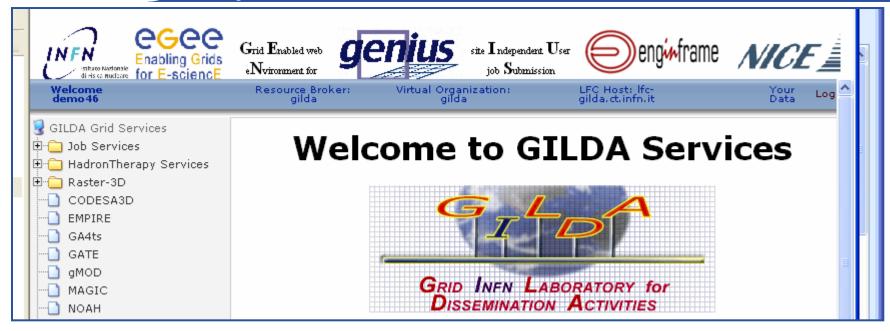
- Command Line Interfaces / Scripts
- APIs
- Higher level tools

From desktop Windows applications

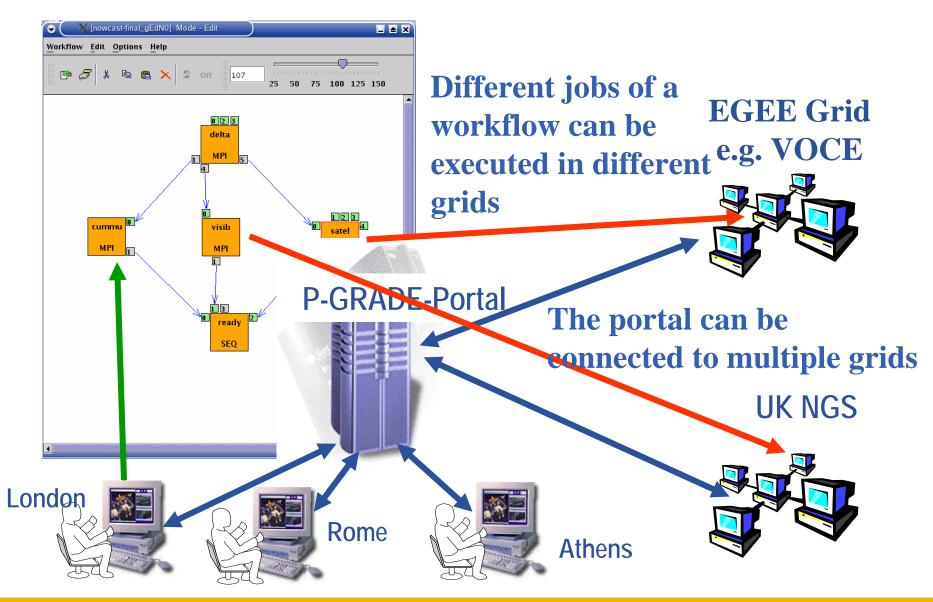

- Use Grids without awareness of them!
- But gLite not (yet) supporting Windows

From portals

- For recurring tasks: "core grid services" as well as application layer
- Accessible from any browser
- Tailored to applications
- In EGEE: P-GRADE and GENIUS


Example of higher-level tools: GANGA

- •Ganga is a lightweight user tool ganga.web.cern.ch/
- But also: Ganga is a developer framework


GENIUS

- For many application communities
 - Interface can be tailored for specific requirements
- For demonstration purposes
 - https://glite-demo.ct.infn.it/
 - Available for anyone to use
 - https://glite-tutor.ct.infn.it/
 - Fuller functionality for users who have stored long-lived proxy in MyProxy server

Multi-Grid P-GRADE Portal

- Basic Concepts
- Types of Grid Applications
- Challenges

- I need resources for my research
 - I need richer functionality
 - MPI, parametric sweeps,...
 - Data and compute services together...
- I provide an application for (y)our research
 - How!?
 - Pre-install executables ?
 - Hosting environment?
 - Share data
 - Use it via portal?
- We provide applications for (y)our research
 - Also need:
 - Coordination of development
 - Standards
 - •

ngineering challenges increasing

Challenges

Enabling Grids for E-sciencE

- Research software is often
 - Created for one user: the developer
 - Familiarity makes it useable
 - Short-term goals:
 Used until papers
 are written and
 then discarded

- Grid
 applications are
 often used
 - by a VO
 - Without support from developer
 - In new contexts and workflows

- Grid application developers are
 - In a research environment
 - Yet their s/w must have:
 - Stability
 - Documentation
 - Useability
 - Extendability
 - i.e. Production quality

Need expertise in:

- software engineering
- application domain
- grid computing/

Consequences

- Team work!
- Engaged in world-wide initiatives reuse, don't make your own! Cross disciplines for solutions.
- From research to production software: ~5 times the effort.
 - "80% of the time for last 10% of the functionality & reliability"
- Standardisation is key
 - For re-use, for dynamic configuration of services,...
 - Both for middleware and domain specific (e.g. GEON)
- Need to follow a deliberate development process
 - Waterfall? Rapid prototyping?
 - Requirements engineering, design, implementation, validation, deployment
 - Engaged with the user community

Enabling Grids for E-sciencE

Questions?

www.eu-egee.org

