High Granular Noble Liquid Calorimeter

J. Faltova (Charles University) on behalf of Noble liquid calorimetry group

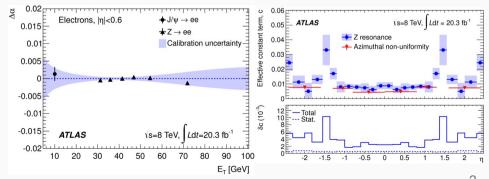
9/4/2021, ECFA Detector R&D Roadmap Symposium TF2

Current Noble Liquid Calorimeters

Well understood concept with good experience from HERA, D0, NA31, ATLAS

Advantages

- Very good energy resolution
- Excellent linearity and stability of response
- Radiation hardness
- Very good timing and position resolution
- Particle identification capabilities (e, γ , π^{0})
- Cost effective solution

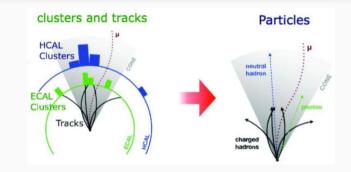

Current design of the noble liquid calorimeters has limited granularity

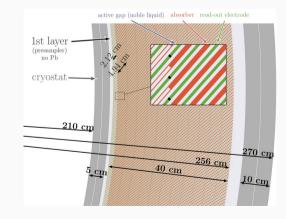
Alternative to silicon calorimeters

ATLAS LAr calorimeter

Future Noble Liquid Calorimeters

Future calorimeters has to be optimised for advanced reconstruction techniques such as particle flow algorithm or machine learning


- Energy resolution
- Particle identification


"Smooth" connection between the tracker and calorimeter

-> High granularity is the key ingredient

High granularity possible with usage of multi-layer PCBs $(\Delta\eta \times \Delta\varphi \approx 0.01 \times 0.01, 8-12 \text{ longitudinal layers})$ – Good performance achieved using MC simulations (CERN-FCC-PHYS-2019-0003) – Considered as a benchmark for FCC-hh detector and an

option for FCC-ee detector

R&D projects on noble liquid calorimeters

1/ Carbon composite cryostat (CERN)

-- Low material budget in front of the calorimeter crucial for e.g. energy resolution

2/ High density feed through design (CERN)

- 10 x # channels compared to ATLAS, up to 50 cables/ cm^2

3/ Read-out electrode design and performance optimisation (CERN, CNRS-IJCLab)

- Important e.g. for keeping the electronic noise low

4/ Software development (CERN, Charles Uni)

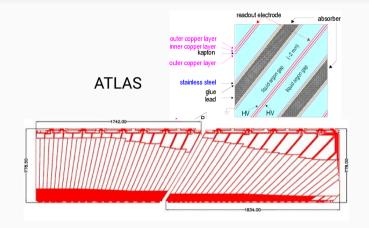
R&D projects supported by: CERN EP R&D, H2020 (AIDAinnova)

More details about the project will be shown at ECFA TF6 Calorimeters session by B. Francois (https://indico.cern.ch/event/999820/)

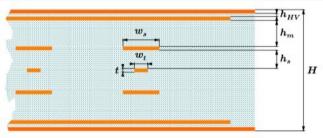
BACKUP

How to achieve high granularity

Full granularity of 10 x ATLAS LAr calorimeter granularity


• Few millions of cells to be read out

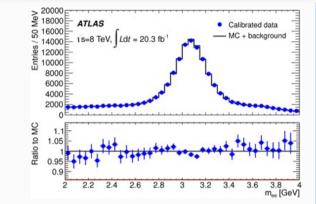
ATLAS read-out not possible


 Traces to route the signals to the front or back of the electrode take space, not possible to read out more longitudinal compartments

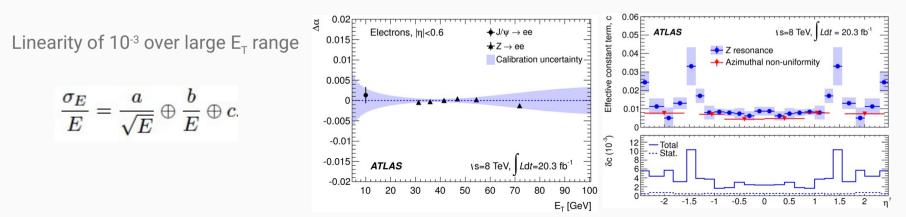
Multi-layer PCBs

- Signal routed in a deep layer
- Design with 7 layers considered
 - High voltage, read-out, signal traces, shielding of the traces
- Electronic noise proportional to the capacitance of the cells
 - Higher granularity -> more shields -> capacitance between shields and signal pads increases

FCC calorimeter read-out, side view (perpendicular to the signal traces)


Performance of ATLAS LAr calorimeter

Results using LHC Run 1 data


Validated and measured with J/ψ and Z boson peak

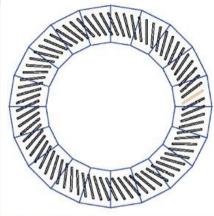
Energy resolution

- Sampling term *a* of 10%
- Noise term of *b* ~250 MeV per cluster (without pile-up)
- Measured constant term of c of 0.7% in the central barrel

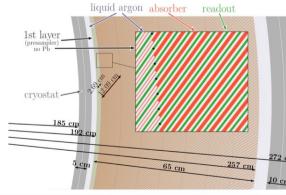
arXiv:1407.5063

LAr ECAL for FCC-hh

LAr calorimeter is a part of the FCC-hh reference detector


Tilted Pb planes around the barrel as a consequence of the choice of multi-layer PCBs

Fine longitudinal and lateral granularity

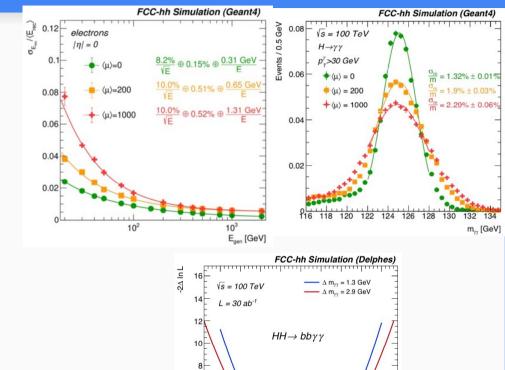

- Optimized for particle flow
- Needed for the efficient pile-up suppression
- 8 longitudinal compartments, fine lateral granularity
 - Granularity: $\Delta \eta \times \Delta \varphi \approx 0.01 \times 0.01$; 2nd layer $\Delta \eta \times \Delta \varphi \approx 0.0025 \times 0.02$
- ~2.5M channels

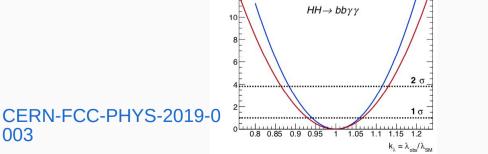
Sampling fraction (SF) changes with depth

SF \approx 1/7 to 1/4 (LAr gap 2 x 1.15 mm to 2 x 3.09 mm

Electromagnetic calorimeter barrel

- 2 mm absorber plates inclined by 50° angle;
- LAr gap increases with radius: 1.15 mm-3.09 mm;
- 8 longitudinal layers (first one without lead as a presampler);
- $\Delta \eta = 0.01$ (0.0025 in 2nd layer);
- $\Delta \phi = 0.009;$

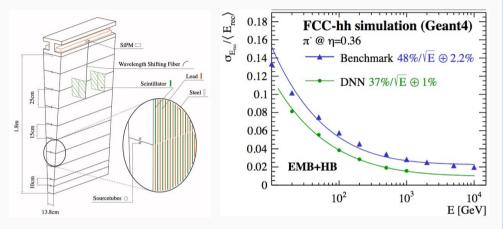

Performance of FCC-hh LAr ECAL


003

Required energy resolution achieved

- Sampling term $\leq 10\%/\sqrt{E}$
- Only ≈300 MeV electronic noise with multilayer electrodes (comparable with ATLAS)
- Impact of in-time pile-up at $\langle \mu \rangle$ = 1000 of \approx 1.3 GeV pile-up noise

-> Efficient in-time pile-up suppression will be crucial (using the tracker)



Performance for hadrons

Combined performance of LAr ECAL and fine granular scintillating Tile HCAL ($\Delta \eta \times \Delta \varphi \approx 0.025$) x 0.025)

Very good energy resolution obtained using deep neural network with calorimeter information only

 Sampling term of 37%/√E achieved (without tracker)

CERN-FCC-PHYS-2019-0 003

FCC-hh simulation EMB+HB 100 GeV π^- @ $\eta = 0.36$, topo-cluster 4-2-0 PU0