Challenges in

Liquid Scintillator and Water Detectors

ECFA Symposium TF2 9 April 2021 Michi Wurm (JGU Mainz)

R&D for water and LS projects

Well-established techniques and projects currently in the development phase

- Iarge-volume water(+Gd!) detectors
- ultrapure LS detectors
- metal-loaded (Te) LS detectors for 0vββ
- efficient veto detectors (water, LS, Gd-doped)

 \rightarrow SNO+

 \rightarrow HyperK

 \rightarrow JUNO

 \rightarrow Darwin, SHiP ...

LS & Water

R&D for water and LS projects

New concepts: New techniques that go beyond the present state-of-the art and are entering demonstration phase

- hybrid Cherenkov/scintillation detectors → Theia
- cold LS with SiPM read-out
- opaque LS with fiber read-out
- LS doped with quantum dots for $0\nu\beta\beta$ searches \rightarrow NuDot
- → different requirements but common R&D topics!

Michael Wurm (Mainz)

 \rightarrow TAO

 \rightarrow LiquidO

Concrete R&D Topics

liquid composition

- bulk material
- \circ (metal) doping
- light emission properties
 - fluorescence times
 - spectrum
- optical transparency
- radiopurity
- coupling to new photo sensors
- advanced event reconstruction

Quantum Dots emission spectrum depends on size & elemental composition

Fluorescence intensity

iquidC

Example 1: Hybrid optical detectors

 basic idea: simultaneous readout of scintillation and Cherenkov signals

performance benefits

- $\circ~$ improved energy and vertex reco
- o particle ID via C/S ratio
- simplified metal loading

new detector requirements

- very transparent target medium
- either fast timing (WbLS) and (sub-)nanosec photo sensors
- or slow timing (slow fluors, solvents) in fully organic LS
- \rightarrow trade-off between costs, timing, light yield ...

R&D challenges

- transparency: Rayleigh scattering off mycels
- purification of dual-phase liquid
- complex event reconstruction (dual signal)

LS & Water

Particle ID based on the ratio of Cherenkov-to-scintillation (C/S) photons

Example 2: Cold organic scintillators

basic idea

LS detector at -50°C

- read-out by SiPMs (high QE)
- o enhanced light yield
- \rightarrow maximize light collection

performance benefits several 10³ p.e./MeV collected → energy resolution <2% @ 1 MeV

new detector requirements

- optical transparency
- o chemical stability
- at very low temperatures

R&D challenges

Michael Wurm (Mainz)

- o freezing out of water & organic components
- large number of channels for full optical coverage

Cold LS permits large-scale deployment of SiPMs (TAO)

(different LS and bulk materials)

Improving Purification & Characterization JG

Water

radiopure water of benefit for whole community:

- direct for water-based neutrino detectors
- indirect for water/steam extraction of LS
- \rightarrow new techniques to go below 10⁻¹⁵ g/g U/Th?

WbLS/metal-loaded organic LS

- purification of composite detector materials
- pioneered for Gd+water: divide and purify

Challenges in Characterization

- measure optical attenuation length ≥30m
- table-top → long-arm setups (several meters)
- alternatives?
 - e.g. CELLPALS: interferometry of intensitymodulated light pulses in reflective cavities

CELLPALS interferometry setup (U.Tübingen)

Interfacing new photosensors

	Photosensor	Features
Multi-PMT module	Large-area PMTs (high-QE & MCP-PMT)	Enhanced light collection
	M-DOMs, Multi-PMT modules in water	Exploit granularity for reconstruction
LAPPO25 10 week	LAPPDs in water/WbLS	<pre>ps-timing for improved vertex reco and Č/S separation</pre>
LAPPD	Dichroicons in WbLS	Wavelength-separation for hybrid-reconstruction
Dichroicon	WOMs in water/LS	Large light collection area optical coupling and emission/absorption spectra
WOM ALG SiPM module	SiPMs in LS	High QE/granularity but cooling for dark noise
	+ enhanced light collection: mirrors/cones, (active) light guides, fibres, metalenses	

Need for new reconstruction techniques JG

Challenges

- resolving complicated topologies
 - \circ GeV energies: multi- π/NC events
 - $\circ~$ MeV range: 2-track events for $0\nu\beta\beta$
- reconstruction of hybrid signals (Cherenkov+scintillation)
- large amounts of high-resolution or wavelength-dependent data

Approaches

- "standard" likelihood methods
- machine-learning techniques
- topological reconstruction

0.2

0.1

along a 3-GeV

0.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

X [cm]

muon track in LS

(Wonsak et al.)

Conclusions and Outlook

- substantial progress over the last few years:
 refinement of existing techniques
 - \circ entirely new experimental concepts
 - new "auxiliaries", e.g. photo sensors, reconstruction
- next years: put new concepts to the test in ton-scale setups in underground labs, particle beams ...

ANNIE@FNAL LAPPDs, H₂O+Gd, WbLS

LS & Water

Questions for the panel discussion

- too large: What is the maximum size and attenuation length we can achieve for scintillator detectors?
- too little: Can metal-loaded scintillator detectors hope in the long run to compete with other 0vββ experiments? And what is the best way to optimize energy resolution?
- too much: Are hybrid detectors combining Cherenkov and scintillation signals getting the best or the worst of two worlds?

Thank you for your attention!