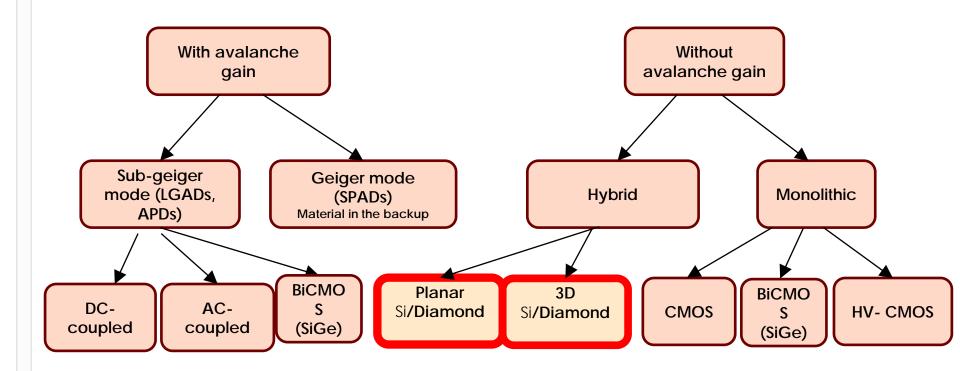


23.4.2021

Use of diamond detectors in 20 years


### What R&D needs to be done to use it in the first layer of FCC?

Alexander Oh University of Manchester

Results and material from the RD42 collaboration.

Alexander Oh, ECFA

#### Solid state detectors for future (4D) trackers



# FCC first layer requirements

Unprecedented particle flux and radiation levels

- 10 GHz/cm<sup>2</sup> charged particles
- 10<sup>18</sup> cm<sup>-2</sup> 1 MeV-n.eq. fluence for 30ab<sup>-1</sup>

challenge @ r=2.5cm

FCC-hh

324 8.4 (10)

84.3 (60) 270 (300)

> 765 4.0

4.5

4.4

6.0 4.8

Rate & Radiation

Table 7.1: Key numbers relating the detector challenges at the different accelerators.

T.L.

LUC III LUC III LUC

| Parameter                                         | Unit                  | LHC  | HL-LHC | HE-LHC |   |
|---------------------------------------------------|-----------------------|------|--------|--------|---|
| Total number of pp collisions                     | 1010                  | 2.6  | 26     | 91     | [ |
| Charged part. flux at 2.5 cm, est.(FLUKA)         | ${ m GHzcm^{-2}}$     | 0.1  | 0.7    | 2.7    |   |
| 1 MeV-neq fluence at 2.5 cm, est.(FLUKA)          | $10^{16}{ m cm}^{-2}$ | 0.4  | 3.9    | 16.8   |   |
| Total ionising dose at 2.5 cm, est.(FLUKA)        | MGy                   | 1.3  | 13     | 54     |   |
| $dE/d\eta _{\eta=5}$ [331]                        | GeV                   | 316  | 316    | 427    |   |
| $dP/d\eta _{\eta=5}$                              | kW                    | 0.04 | 0.2    | 1.0    |   |
| 90% $b\overline{b} p_T^b > 30 \text{GeV/c} [332]$ | $ \eta  <$            | 3    | 3      | 3.3    | Γ |
| VBF jet peak [332]                                | $ \eta $              | 3.4  | 3.4    | 3.7    |   |
| 90% VBF jets [332]                                | $ \eta  <$            | 4.5  | 4.5    | 5.0    |   |
| 90% H $\rightarrow 4l$ [332]                      | $ \eta  <$            | 3.8  | 3.8    | 4.1    |   |

First tracking layer:

10GHz/cm<sup>2</sup> charged particles

10<sup>18</sup> hadrons/cm<sup>2</sup> for 30ab<sup>-1</sup>

Increased Boost at 100TeV 'spreads out' light SM physics by 1-1.5 units of rapidity.

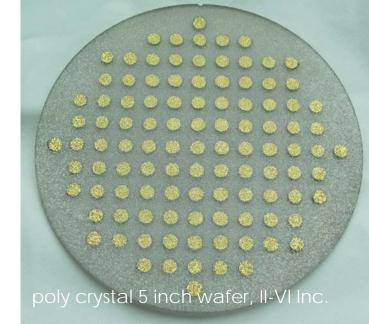
MANCHESTER

The University of Manchester



PLS

#### **Diamond properties**


| Property                                           | Diamond           | Silicon |    |
|----------------------------------------------------|-------------------|---------|----|
| band gap                                           | 5.47              | 1.12    |    |
| mass density [g/cm <sup>3</sup> ]                  | 3.5               | 2.33    |    |
| dielectric constant                                | 5.7               | 11.9    |    |
| resistivity [Ωcm]                                  | >10 <sup>11</sup> | 2.3e5   |    |
| breakdown [kV/cm]                                  | 1e320e3           | 300     |    |
| e mobility [cm <sup>2</sup> /Vs]                   | 1700              | 1400    |    |
| h mobility [cm²/Vs]                                | 2100              | 440     |    |
| therm. conductivity [W / cm K]                     | 1020              | 1.5     | 6- |
| radiation length [cm]                              | 12                | 9.4     |    |
| Energy to create an eh-pair [eV]                   | 13                | 3.6     |    |
| ionisation density MIP [eh/mm]                     | 36                | 89      |    |
| ion. dens. of a MIP [eh/ 0.1 $\%$ X <sub>0</sub> ] | 450               | 840     |    |

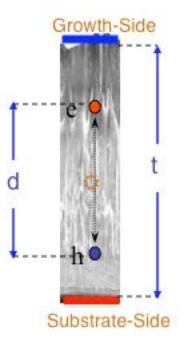
- − Low dielectric constant → low capacitance
- − Low leakage current → low noise
- Room temperature operation
- Fast signal collection time

- -MIP signal ~2 smaller at same X<sub>0</sub>
- -Efficiency < 100% (pCVD)

# Development of CVD Diamond for detector applications

- Today two <u>main manufacturers</u> of detector grade diamond
  - ElementSix Ltd UK
    - polycrystalline wafers
    - small single crystal diamonds
  - II-VI Inc. USA
    - Iarge polycrystalline wafers
    - development effort underway
- Alternative sources
  - Diamond on Iridium (Dol) (Audiatec, Germany)
  - Hetero-epitaxially grown -> medium area
  - Highly oriented crystallites.



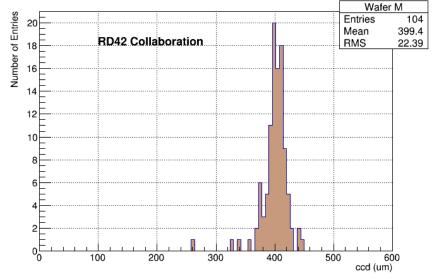





MANCHESTER

# Development of CVD Diamond for detector applications

- Impressive progress over the last 25 years.
- Current state of the art for polycrystalline CVD diamond δ ~ 320 μm in 500um thickness
  - (~11500 e/MIP)
  - commercially available.
  - 1995: δ ~ 50 μm
  - 2000: δ ~ 180 μm
  - 2020: δ ~ 320 μm



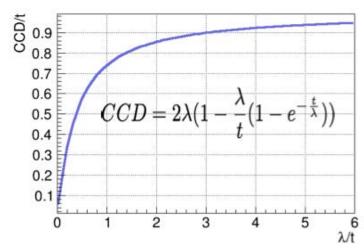

### CVD Diamond development goals

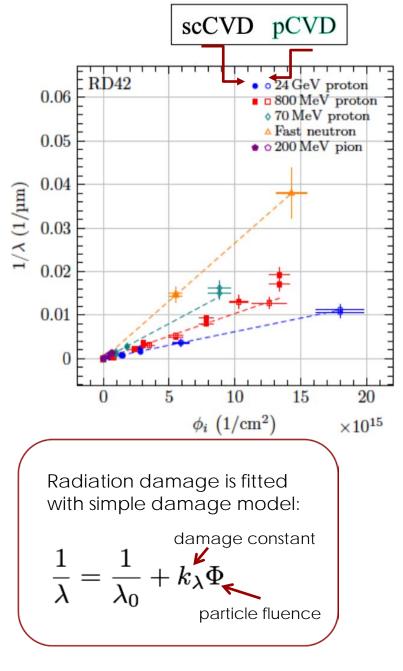
- removal of surface defects
  - few per cm<sup>2</sup> → < 1 per cm<sup>2</sup>
- wafer CCD in pCVD
  - 400 um → **500 um**
- size of wafers = 15cm (6 inch) diameter state of art
  - fixed by microwave frequency (not expected to change)
- wafer uniformity
  - $5\% \rightarrow 2\%$  across whole wafer.
- price per cm<sup>2</sup>
  - ~1500USD / cm<sup>2</sup> → 800USD /cm<sup>2</sup>



Wafer M CCD Distribution 700V




## Radiation Hardness

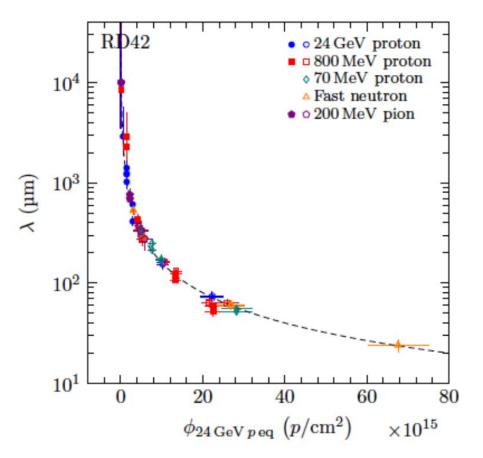

- Irradiated polycrystalline and single crystal CVD diamond.
  - Protons 25MeV, 70MeV, 300MeV, 800MeV, 24GeV
  - Pions 300MeV
  - Neutrons ~1MeV (TRIGA reactor)
- Signal response tested in test-beam.
  - 120 GeV proton
  - pad, strip and pixel-detector pattern,  $E = \pm 2V/\mu m$
  - Samples pre-exposed to Sr<sup>90</sup> to fill traps (aka pumping)
  - Require track on active area, no threshold on strip signals.
  - Build signal of five highest contiguous signals within 10 strips around the track.

MANCHESTER

#### **Radiation Hardness**

- "Charge Collection Distance" (CCD) is measured.
- Traps reduce the life-time of charge carriers, or "Schubweg" (λ).
  - Relation between CCD and λ:



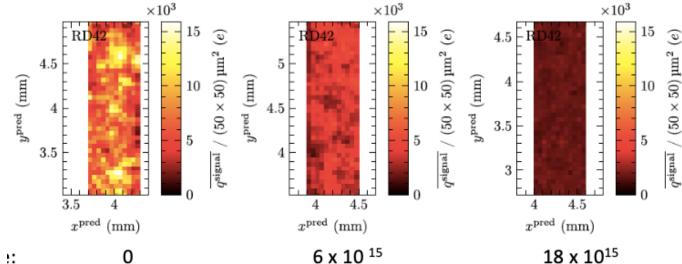


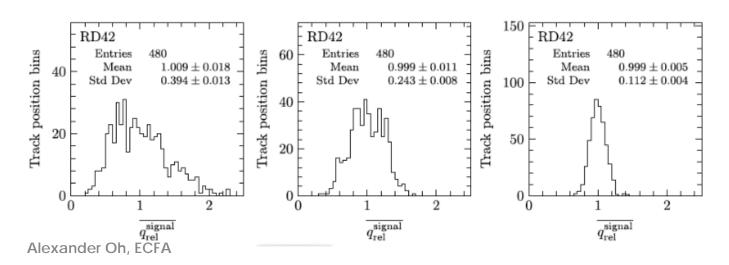

The University of Manchester MANCHESTER

### Radiation Hardness (planar)

#### Scaling to 24 GeV protons

- Universal scaling for all particle types with fluence.
- Poly and single crystal diamond show consistent damage constants.
- Predictions are possible for any particle type and fluence.





https://www.research-collection.ethz.ch/handle/20.500.11850/222412

#### Radiation Hardness: Signal Uniformity

MANCHESTER 1824

The University of Manchester



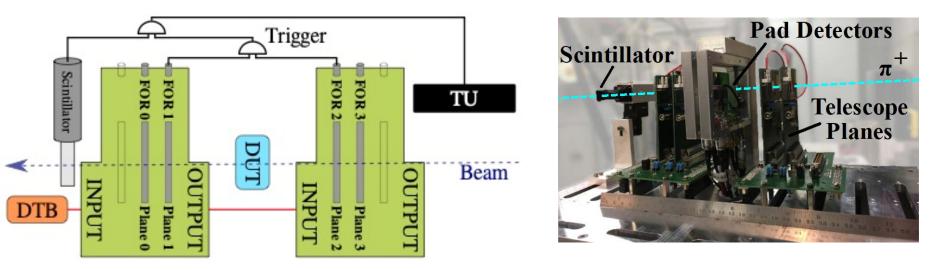


• Re-writing  $\lambda$ ,  $\phi$  relation:

$$\lambda = \frac{\lambda_0}{1 + \lambda_0 k \phi}$$

- Differentiating:
  - $\frac{\mathrm{d}\lambda}{\mathrm{d}\phi} = -k\lambda^2.$
- Highest signal regions
- Suffer largest degradation
- FWHM narrows

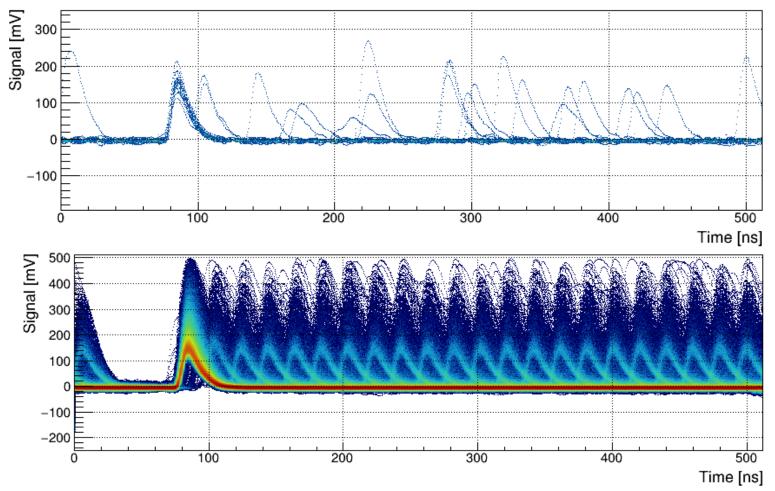
## **Radiation Hardness**


#### Summary of RD42 irradiation results:\*

| <b>Irradiation Species</b> | <b>k</b> i         |
|----------------------------|--------------------|
| 200 MeV pions              | 3.2 ±0.8           |
| Fast neutrons              | 4.27 ± 0.33        |
| 70 MeV protons             | $2.60 \pm 0.27$    |
| 800 MeV protons            | 1.67 <u>+</u> 0.09 |
| 24 GeV protons             | 1                  |

"Back-of-an-envelope calculation, expect Schubweg of:  $\lambda \sim 16 \mu m at 10^{17} cm^{-2} protons_24 GeV_eq$ 

# High Rate tests

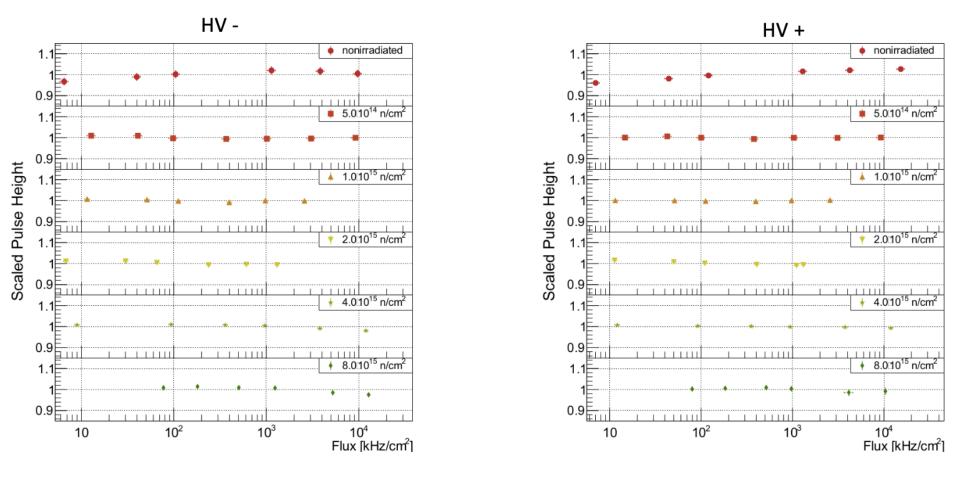

- Tests the pulse height as function of particle rate.
- Test single and poly crystalline diamond.
- Irradiated and un-irradiated.



Reference planes use CMS Pixel detectors: track position 100um Diamond pads (8x8mm<sup>2</sup>) readout with DRS4 flash ADC (5GS/s) Alexander Oh, ECFA

### High Rate tests

Raw Data from 10 MHz/cm<sup>2</sup> Flux




#### 20 triggers

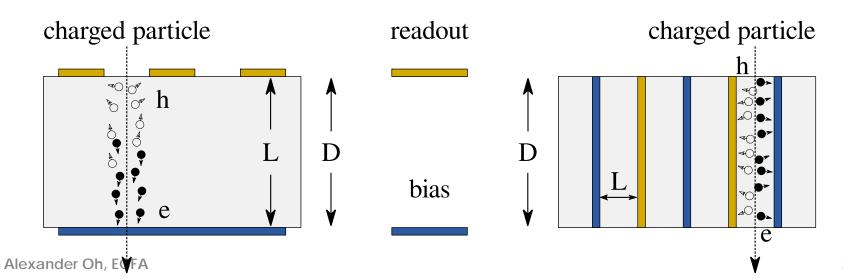
Full run (5000 triggers)

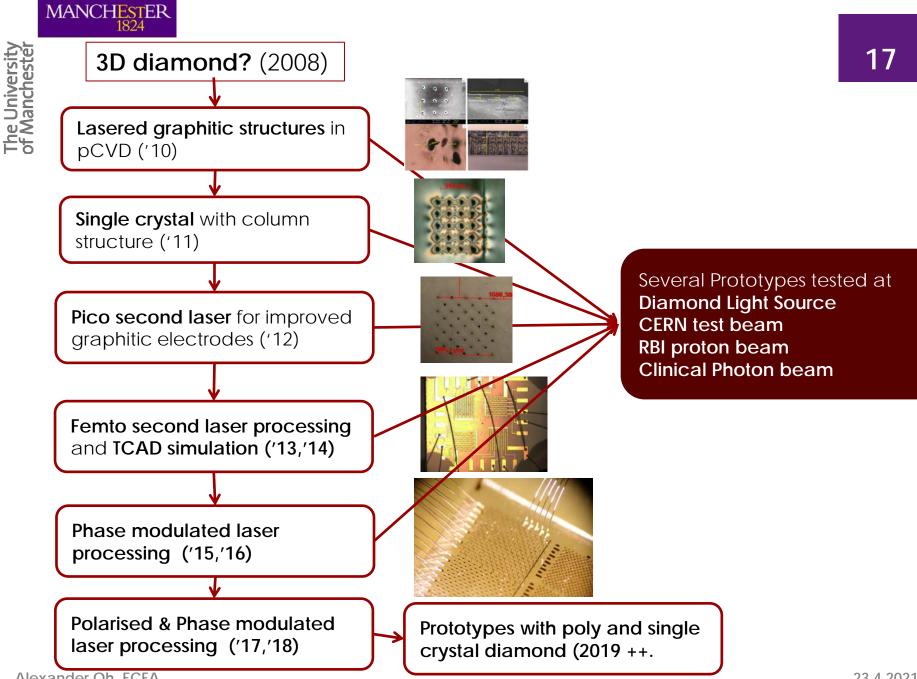
### High Rate tests

neutron irradiated pCVD



Flat to better than 2% up to 10-20 MHz/cm<sup>2</sup>. Exploring systematics of O(1%)

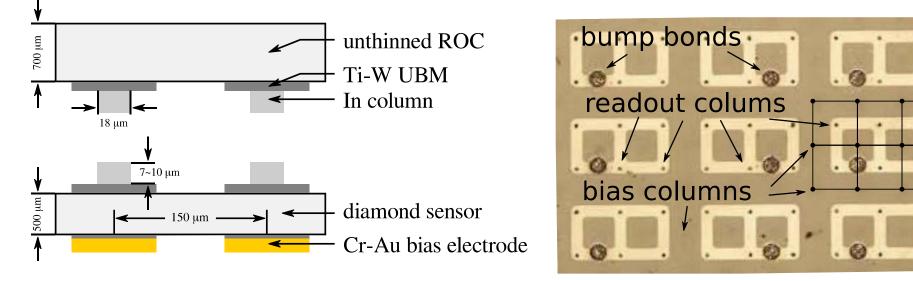

### Carrier lifetime challenge – 3D diamond detectors


- After large radiation fluence all detectors are trap limited
- Mean free paths (schubweg)  $\lambda$  < 50 $\mu$ m

MANCHESTER

The University of Manchestel

- Need to keep drift length (L) smaller than mfp( $\lambda$ )
- Build 3D detectors to reduce transit time.
- Huge progress made in fabrication of 3D diamond detectors in the last 10 years.

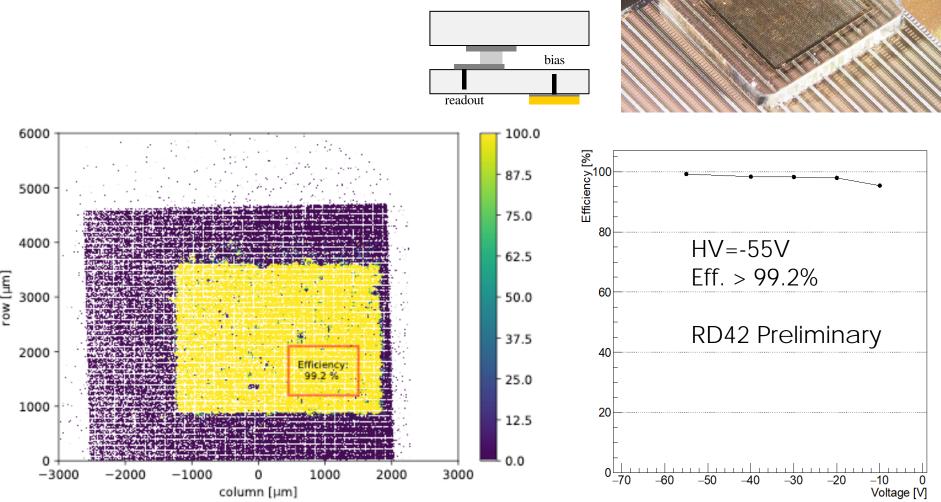





Alexander Oh, ECFA

# 3D diamond prototypes

CMS and ATLAS pixel prototypes tested:




MANCHESTER

The University of Manchestel



CMS and ATLAS pixel prototypes tested:



# 3D diamond detectors challenges for the future

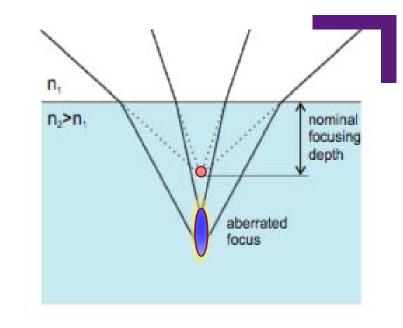
- Optimise graphitisation process for 3D diamond production in terms of:
  - **Resistivity**: currently at  $(1 0.1\Omega \text{ cm})$  aim for  $<0.1\Omega \text{ cm}$ .
  - Processing speed: currently O(10um/s), aim to speed up and/or parallel processing of wires.
  - Wire thickness / uniformity: Little data available, needs more research effort.

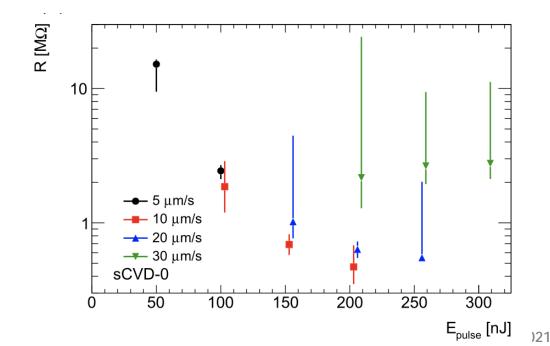
#### Optimization of internal electric field

- Geometry: Recently internal cage structure optimise E field.
- Will explore the full potential (see later slides).

#### Radiation hardness:

- Need to check predictions with latest devices.
- 25um cells in 3D.


MANCHESTER


The University of Manchestel

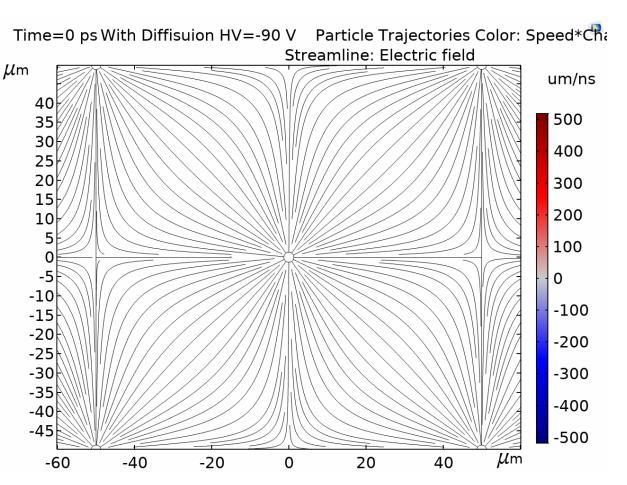


## Resistivity challenge

- Laser wave front shaping helps to decrease resistivity.
- Dependence on processing parameters being studied.
- More research needed to lower resistivity.





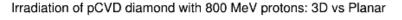

## Carrier lifetime challenge – 3D diamond detectors

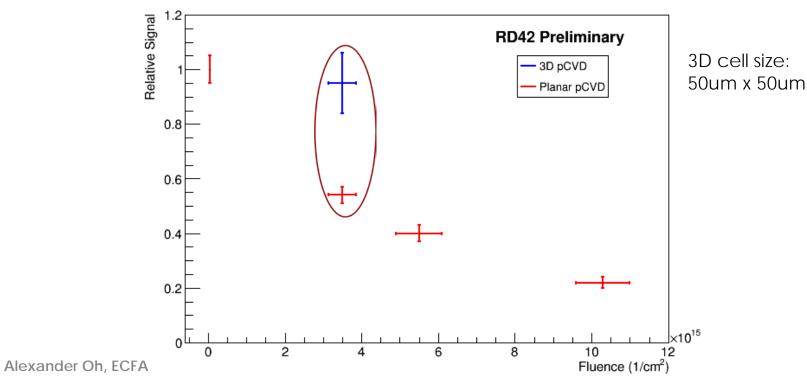
 Low field regions might effect transit time.

MANCHESTER 1824

The University of Manchester

- Preliminary simulations show not a concern due to diffusion.
- More work needed to quantify impact of radiation damage.



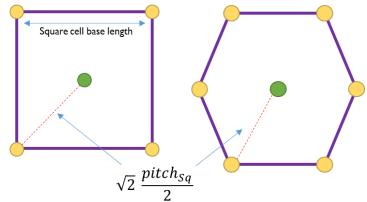


#### 3D diamond detectors: Radiation challenge

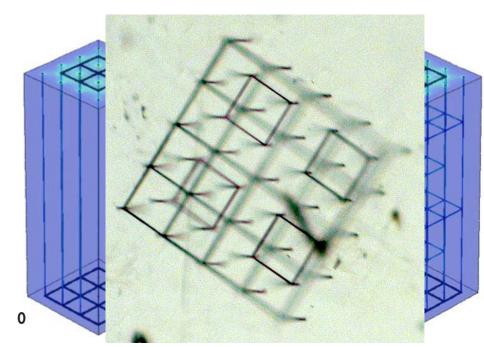
MANCHESTER

The University of Manchestel

- Few radiation hardness data available, but promising:
  - Compare signal loss in 3D pixels to published results from planar
  - 3D sensors collect twice as much charge when unirradiated
  - 3D sensors see 5±10 % reduction in signal at 3.5 x10<sup>15</sup>
  - Planar sensors see 45±5 % reduction for 3.5 x10<sup>15</sup>





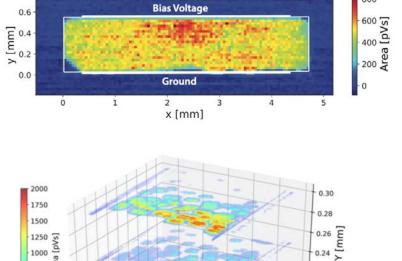

The Universit of Mancheste

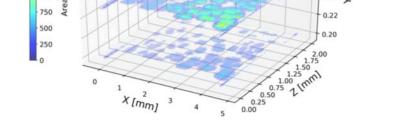
## 3D diamond detectors Geometry challenge

- Laser processing allows any geometry, including horizontal wires.
  - Exiting possibility to optimise the electric and weighting field.
  - Small cell sizes realizable, wire diameter at abut 1µm.
  - Simulation studies currently ongoing.
- Future research in this area:
  - Optimise geometry
  - Wire processing
  - cell sizes <(25µm)<sup>2</sup>
  - Simulation Prototyping Characterization.






### 3D diamond detectors: Characterization challenge

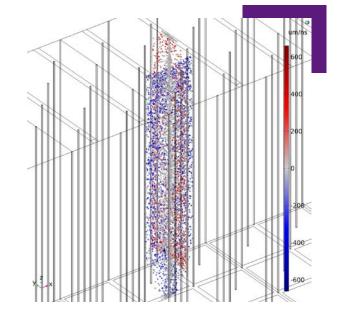

TPA demonstrated.

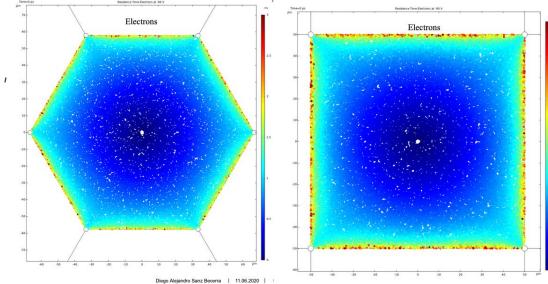
MANCHESTER

The University of Manchestel

- More accurate ionization profiles possible using same beam shaping techniques as in production of wires.
- Research needed to fully exploit technique for characterizations.



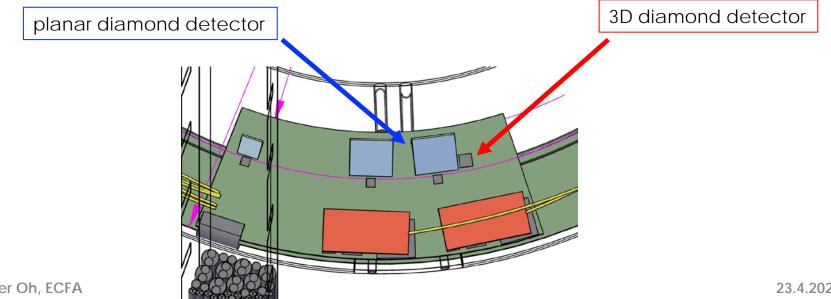




https://www.research-collection.ethz.ch/handle/20.500.11850/445547

The University of Manchester MANCHESTER

### 3D diamond detectors Simulation challenge

- Lack of build-in models, especially pCVD and traps / polarisation in current TCAD tools being addressed.
- Need effort to improve simulations:
  - polycrystalline CVD diamond, grain boundaries.
  - graphitic wire simulation
  - radiation damage
  - new geometries






3D diamond simulation examples from RD42

# 3D diamond detectors Devices in future experiments

- The BCM' phase-2 project of ATLAS will feature a small area 3D diamond detectors.
  - Prove technology readiness for small cells.
  - Stepping stone for larger area application.



MANCHESTER



#### 3D diamond detectors Possible FCC devices

- 3D seems to be a viable option to enhance radiation tolerance.
- Radiation hardness requirement and resulting  $\lambda$  dictate cell size.
- Cell size determined by wire-diameter (1µm) and cell capacitance.
- $(25\mu m)^2$  or even below seems feasible.
  - Loss of efficiency small at  $10^{17}$  peq 25 ÷ 2 ×  $\sqrt{2}$  = 18 µm drift path vs  $\lambda$ =18 µm
  - Leakage current not an issue.
- Main technological challenge for large scale application is the scaling of wire production.

#### Research Challenges for the next 20y Summary

#### Polycrystalline CVD diamond.

- Collection distance 25% increase.
- Decrease price by 50% (happens with larger use as in Si).

#### Radiation tolerance.

- Go to smaller cell size.
- True 3D field electrodes (internal cages) offer huge potential to optimize electric field distribution to minimize drift time.
- Also offer possibility of gain in diamond.

#### Processing of 3D graphitic wires in diamond.

- Reduce resistivity.
- Scale production capability.

MANCHESTER

The University of Manchestel



#### Discussion