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Use of diamond detectors

In 20 years

What R&D needs to be
done to use it In the first
layer of FCC?

Alexander Oh
University of Manchester

Results and material from the RD42 collaboration.

Alexander Oh, ECFA 1
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Solid state detectors for future (4D) trackers
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Rate & Radiation
challenge

@ r=2.5cm
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Unprecedented particle flux and radiation levels

= 10 GHz/cm? charged particles

= 108 cm? 1 MeV-n.eq. fluence for 30ab-!

Table 7.1: Key numbers relating the detector challenges at the different accelerators.
| Parameter Unit LHC | HL-LHC | HE-LHC | FCC-hh |

Total number of pp collisions 10" 2.6 26 91 324
Charged part. flux at 2.5 cm, est.(FLUKA) GHzem ™ 0.1 0.7 2.7 8.4 (10)
1 MeV-neq fluence at 2.5cm, est. (FLUKA) | 10"°cm™ 0.4 3.9 168 | 84.3 (60)
Total ionising dose at 2.5 cm, est.(FLUKA) MGy 13 13 54 270 (300)
dE/dn|,—s [331] GeV 316 316 427 765
dP/dn|,—s kW 0.04 0.2 1.0 4.0
90% bb p7 > 30GeV/c [332] In|< 3 3 3.3 4.5
VBEF jet peak [332] In| 3.4 3.4 3.7 4.4
90% VBF jets [332] n|< 4.5 4.5 5.0 6.0
90% H — 4l [332] |n|< 3.8 3.8 4.1 4.8

Alexander Oh, ECFA

First tracking layer:
10GHz/cm? charged particles

1018 hadrons/cm?2for 30ab!

Increased Boost at 100TeV
‘spreads out’ light SM physics
by 1-1.5 units of rapidity.

23.4.2021
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25 Property Diamond Silicon
% = band gap 5.47 1.12
LS mass density [g/cm?3] 3.5 2.33
,Eqa dielectric constant 5.7 11.9
resistivity [QQcm] >101 2.3e5
breakdown [kV/cm] 1le3...20e3 300
e mobility [cm?/Vs] 1700 1400
h mobility [cm?/Vs] 2100 440
therm. conductivity [W / cm K] 10..20 1.5
radiation length [cm] 12 9.4
Energy to create an eh-pair [eV] 13 3.6
ionisation density MIP [eh/mm] 36 89
ion. dens. of a MIP [eh/ 0.1 %0 X,] 450 840

— Low dielectric constant =» low capacitance
— Low leakage current =» low noise
— Room temperature operation

— Fast signal collection time

—MIP signal ~2 smaller at same X,

—Efficiency < 100% (pCVD)

Alexander Oh, ECFA
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Development of CVD Diamond
for detector applications
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® Today two main manufacturers of
detector grade diamond

® ElementSix Ltd UK

® polycrystalline wafers

= small single crystal diamonds
m [[-VIInc. USA

m |arge polycrystalline wafers

m development effort underway

m Alternative sources

= Diamond on Iridium (Dol) (Audiatec,
Germany)

®m Hetero-epitaxially grown -> medium area
®m Highly oriented crystallites.

r

Alexander Oh, ECFA single crystal

- Dol, I55ct

23.4.2021
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Development of CVD Diamond n
for detector applications

® |mpressive progress over the last 25 years.

m Current state of the art for polycrystalline CVD
diamond 8 ~ 320 um in 500um thickness

= (~11500 e/MIP)

m commercially available. [
"1995:  §~50um a [l
®2000: &~ 180 pum | |8
= 2020: $§~320um 7 g

Substrate-Side

Alexander Oh, ECFA 23.4.2021
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CVD Diamond
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® removal of surface defects
= few percm? —» <1 percm?

= wafer CCD in pCVD
= 400 um — 500 um

m size of wafers = 15cm (6 inch)
diameter state of art

® fixed by microwave frequency (not
expected to change)

= wafer uniformity
m 500 — 2% across whole wafer.

m price per cm?
m ~1500USD / cm? — 800USD /cm?

Alexander Oh, ECFA
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Radiation Hardness

® |rradiated polycrystalline and single crystal CVD
diamond.

Protons 25MeV, 70MeV, 300MeV, 800MeV, 24GeV
Pions 300MeV
Neutrons ~1MeV (TRIGA reactor)

m Signal response tested in test-beam.

120 GeV proton
pad, strip and pixel-detector pattern, E = £2V/um
Samples pre-exposed to Sr° to fill traps (aka pumping)

Require track on active area, no threshold on strip
signals.

Build signal of five highest contiguous signals within 10
strips around the track.

Alexander Oh, ECFA

23.4.2021
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Radiation Hardness (planar)

1 1 I LI I 1 LI | LI I R R I I LI |
| RD42 e 024GeV proton |
= 0800 MeV proton
¢ 70 MeV proton
Fast neutron
* 0200 MeV pion

T

m Scaling to 24 GeV protons 10*

m Universal scaling for all particle
types with fluence.
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https://www.research-collection.ethz.ch/handle/20.500.11850/222412

Alexander Oh, ECFA 23.4.2021
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Radiation Hardness

= Summary of RD42 irradiation results:”

Irradiation Species

200 MeV pions 3.2 108

70 MeV protons 2.60 +0.27

24 GeV protons 1

”Back-of-an-envelope calculation, expect Schubweg of:
A ~16um at 107 cm2 protons_24 GeV_eq

*normalized to 24GeV protons
Alexander Oh, ECFA 23.4.2021
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High Rate tests

m Tests the pulse height as function of particle rate.
m Test single and poly crystalline diamond.

m rradiated and un-irradiated.

- Tri Pad Detectors
= l‘lgger_é_%_u_ S-‘ciljﬁl{ator /A u+
=: HRSE @ 8 Telescope
= ‘ & Planes
@ B
o eam -
% LT g g i ‘ % /
S Si§ g =

Reference planes use CMS Pixel detectors: track position 100um

Diamond pads (8x8mm?2) readout with DRS4 flash ADC (5GS/s)

Alexander Oh, ECFA 7 23.4.2021
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High Rate tests

m Raw Data from 10 MHz/cm? Flux

i
500

Time [ns]

Alexander Oh, ECFA

20 triggers

Full run
(5000 triggers)
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Scaled Pulse Height
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Flat to better than 2%

High Rate tests

= neutron irradiated pCVD
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up to 10-20 MHz/cm?. Exploring systematics of O(1%)



MANCHESTER
1824

ity
er

The Universit
of Manchest

Carrier lifetime challenge -
3D diamond detectors

m After large radiation fluence all detectors are trap limited

Mean free paths (schubweg) A< 50um
Need to keep drift length (L) smaller than mfp(A)
Build 3D detectors to reduce transit time.

Huge progress made in fabrication of 3D diamond detectors
in the last 10 years.

charged particle readout charged particle
[ 1 [ 1 | —— | I—— h

O A A <

& O
& & ~®”
O e L | D D “Clgr
o 0 i bias <
> ® C \J \J =

Alexander Oh, E(vFA
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3D diamond? (2008)
v

Lasered graphitic structures in
pCVD (°10)
.

Single crystal with column
structure (‘11)
\

7

7

l, Several Prototypes tested at
([ _ Diamond Light Source
Pico second laser for improved CERN test beam

graphitic electrodes (‘12)

RBI proton beam
l - Clinical Photon beam

\.

y
Femto second laser processing
and TCAD simulation (’13,’14)

{

Phase modulated laser
processing ('15,’16)
\_

\.

7

v
y
Polarised & Phase modulated Prototypes with poly and single
: laser processing (°17,"18) ) crystal diamond (2019 ++.

Alexander Oh, ECFA 23.4.2021
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m CMS and ATLAS pixel prototypes tested:

+— 1 unthinned ROC l“'“'l“ ~ Oln m
- Ti-W UBM @
_,| |<_ <— In column :

18 um
' _ [
i<_| 150 jum _>i 3 diamond sensor
<— (Cr-Au bias electrode G =

—>| 700 um  |-—-—

7~10 pm

—>|500 uml(—

Alexander Oh, ECFA 23.4.2021
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3D diamond prototypes

m CMS and ATLAS pixel prototypes tested:
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3D diamond detectors
challenges for the future

= Optimise graphitisation process for 3D diamond production
In terms of:

® Resistivity: currently at (1 - 0.1Q2cm) aim for <0.1Qcm.

® Processing speed: currently O(10um/s), aim to speed up and/or
parallel processing of wires.

= Wire thickness / uniformity: Little data available, needs more
research effort.

= Optimization of internal electric field
m Geometry: Recently internal cage structure optimise E field.
= Will explore the full potential (see later slides).

= Radiation hardness:
® Need to check predictions with latest devices.
m 25um cells in 3D.

Alexander Oh, ECFA

23.4.2021
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Resistivity challenge

m Laser wave front
shaping helps to
decrease resistivity.

® Dependence on

processing g | |
: o
parameters being ol ] )
studied. - -
= More research I | 17
needed to lower e 5 umis

resistivity. e o h E
- —+*30umfs ]
- sCVD-0 .

oo by ey by by by by

0 50 100 150 200 250 300

Alexander Oh, ECFA Epulse [nJ]
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m Low field regions
might effect
transit time.

® Preliminary
simulations show
not a concern
due to diffusion.

® More work
needed to
guantify impact
of radiation
damage.

Alexander Oh, ECFA

Caurrier lifetime challenge -
3D diamond detectors
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3D diamond detectors: Radiation challenge

m Few radiation hardness data available, but promising:
m Compare signal loss in 3D pixels to published results from planar

m 3D sensors collect twice as much charge when unirradiated
m 3D sensors see 5+10 % reduction in signal at 3.5 x101°
m Planar sensors see 45+5 % reduction for 3.5 x10%°

Relative Signal

Alexander Oh, ECFA
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Irradiation of pCVD diamond with 800 MeV protons: 3D vs Planar

B RD42 Preliminary
L — 3D pCVD 3D cell size:
B — Planar pCVD 50um x 50um
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3D diamond detectors

Geometry challenge _

= | aser processing allows any
geometry, including
horizontal wires.

m Exiting possibility to optimise

<

h Square cell base length -

the electric and weighting
field.

m Small cell sizes realizable, wire
diameter at abut 1um.

= Simulation studies currently
ongoing.

® Future research in this area:
= Optimise geometry
® Wire processing
m cellsizes <(25um)?
|

Simulation - Prototyping -
Characterization.

Alexander Oh, ECFA
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'E 04

E
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® More accurate ionization profiles
possible using same beam shaping
techniques as in production of
wires.

m TPA demonstrated.

& & ¥ W
Y [mm]

®m Research needed to fully exploit H.i';‘jj

|
{ 1000

technique for characterizations. H

Area [pVs]

500

2
X[mm} 3

https://www.research-collection.ethz.ch/handle/20.500.11850/445547

Alexander Oh, ECFA 23.4.2021
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m | ack of build-in models,

especially pCVD and traps /

polarisation in current TCAD
tools being addressed.

m Need effort to improve

simulations:

= polycrystalline CVD diamond,

grain boundaries.

® graphitic wire simulation
m radiation damage

= new geometries

Alexander Oh, ECFA

Resdencs Tima

3D diamond detectors
Simulation challenge

actrena st 50 v

Electrons

3D diamond simulation examples from R

Ressdanca Trme Esetrona 3t 90

Electrons
P TR L ot B e o

D42
2.
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Devices In future experiments

m The BCM’ phase-2 project of ATLAS will feature a small

area 3D diamond detectors.
® Prove technology readiness for small cells.
m Stepping stone for larger area application.

planar diamond detector

Alexander Oh, ECFA

3D diamond detector

23.4.2021
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m 3D seems to be a viable option to enhance radiation
tolerance.

= Radiation hardness requirement and resulting A dictate
cell size.

m Cell size determined by wire-diameter (1um) and cell
capacitance.

= (25um)? or even below seems feasible.

m Loss of efficiency small at 1017 peq
25 + 2 X v/2 = 18 pm drift path vs A=18 um
m | eakage current not an issue.

= Main technological challenge for large scale application
Is the scaling of wire production.

Alexander Oh, ECFA 23.4.2021
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Research Challenges for the next 20y
summary

m Polycrystalline CVD diamond.
m Collection distance 25% increase.
m Decrease price by 50% (happens with larger use as in Si).

m Radiation tolerance.
m Go to smaller cell size.

® True 3D field electrodes (internal cages) offer huge potential to
optimize electric field distribution to minimize drift time.

m Also offer possibility of gain in diamond.

m Processing of 3D graphitic wires in diamond.
®m Reduce resistivity.
m Scale production capabillity.

Alexander Oh, ECFA 23.4.2021
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Discussion

Alexander Oh, ECFA
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