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FCC first layer requirements
Unprecedented particle flux and radiation levels

 10 GHz/cm2 charged particles

 1018 cm-2 1 MeV-n.eq. fluence for 30ab-1

Rate & Radiation 
challenge

@ r=2.5cm
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Diamond properties

– Low dielectric constant  low capacitance
– Low leakage current  low noise
– Room temperature operation
– Fast signal collection time

Property________________ Diamond____ Silicon
band gap 5.47 1.12
mass density [g/cm3] 3.5 2.33
dielectric constant 5.7 11.9
resistivity [Ωcm] >1011 2.3e5
breakdown [kV/cm] 1e3...20e3 300
e mobility  [cm2/Vs] 1700 1400
h mobility [cm2/Vs] 2100 440
therm. conductivity [W / cm K] 10..20 1.5
radiation length [cm] 12 9.4
Energy to create an eh-pair [eV] 13 3.6
ionisation density  MIP [eh/mm] 36 89
ion. dens. of a MIP [eh/ 0.1 ‰ X0] 450 840

–MIP signal ~2 smaller at same X0

–Efficiency < 100% (pCVD)
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Development of CVD Diamond 
for detector applications
 Today two main manufacturers of 

detector grade diamond
 ElementSix Ltd UK
 polycrystalline wafers
 small single crystal diamonds

 II-VI Inc. USA
 large polycrystalline wafers
 development effort underway

 Alternative sources
 Diamond on Iridium (DoI) (Audiatec, 

Germany)
 Hetero-epitaxially grown -> medium area
 Highly oriented crystallites.
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Development of CVD Diamond 
for detector applications

 Impressive progress over the last 25 years.

 Current state of the art for polycrystalline CVD 
diamond  δ ~ 320 µm in 500um thickness  
 (~11500 e/MIP) 
 commercially available.

 1995: δ ~ 50 µm
 2000: δ ~ 180 µm
 2020: δ ~ 320 µm
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CVD Diamond
development goals

 removal of surface defects
 few per cm2 → < 1 per cm2

 wafer CCD in pCVD
 400 um → 500 um

 size of wafers = 15cm (6 inch) 
diameter state of art
 fixed by microwave frequency (not 

expected to change) 

 wafer uniformity
 5% → 2% across whole wafer.

 price per cm2

 ~1500USD / cm2 → 800USD /cm2
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Radiation Hardness
 Irradiated polycrystalline and single crystal CVD 

diamond.
 Protons 25MeV, 70MeV, 300MeV, 800MeV, 24GeV
 Pions 300MeV
 Neutrons ~1MeV (TRIGA reactor)

 Signal response tested in test-beam.
 120 GeV proton
 pad, strip and pixel-detector pattern, E = ±2V/µm
 Samples pre-exposed to Sr90 to fill traps (aka pumping)
 Require track on active area, no threshold on strip 

signals.
 Build signal of five highest contiguous signals within 10 

strips around the track.
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Radiation Hardness
 “Charge Collection 

Distance” (CCD) is 
measured.

 Traps reduce the life-time 
of charge carriers, or 
“Schubweg” (λ). 
 Relation between CCD

and λ:
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damage constant

particle fluence

Radiation damage is fitted
with simple damage model:



Radiation Hardness (planar)

 Scaling to 24 GeV protons
 Universal scaling for all particle 

types with fluence.
 Poly and single crystal 

diamond show consistent 
damage constants.

 Predictions are possible for 
any particle type and fluence.
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Radiation Hardness:
Signal Uniformity
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Radiation Hardness

 Summary of RD42 irradiation results:
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*normalized to 24GeV protons

”Back-of-an-envelope calculation, expect Schubweg of:
λ ∼ 16µm at 1017 cm-2 protons_24 GeV_eq

*



High Rate tests
 Tests the pulse height as function of particle rate.

 Test single and poly crystalline diamond.

 Irradiated and un-irradiated.
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High Rate tests
 Raw Data from 10 MHz/cm2 Flux 
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High Rate tests
 neutron irradiated pCVD

 Flat to better than 2% up to 10-20 MHz/cm2. 
Exploring systematics of O(1%) 
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Carrier lifetime challenge –
3D diamond detectors
 After large radiation fluence all detectors are trap limited

 Mean free paths (schubweg) λ< 50μm

 Need to keep drift length (L) smaller than mfp(λ)

 Build 3D detectors to reduce transit time.

 Huge progress made in fabrication of 3D diamond detectors 
in the last 10 years.
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Lasered graphitic structures in 
pCVD (’10)

Single crystal with column 
structure (‘11)

Pico second laser for improved 
graphitic electrodes (‘12)

Several Prototypes tested at 
Diamond Light Source 
CERN test beam 
RBI proton beam
Clinical Photon beam

Femto second laser processing 
and TCAD simulation (’13,’14) 

Phase modulated laser 
processing  (’15,’16) 

Polarised & Phase modulated 
laser processing  (’17,’18) 

Prototypes with poly and single 
crystal diamond (2019 ++. 

3D diamond? (2008)



3D diamond prototypes
 CMS and ATLAS pixel prototypes tested:
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3D diamond prototypes

 CMS and ATLAS pixel prototypes tested:
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HV=-55V
Eff. > 99.2%

RD42 Preliminary



3D diamond detectors
challenges for the future
 Optimise graphitisation process for 3D diamond production 

in terms of:
 Resistivity: currently at (1 - 0.1Ωcm) aim for <0.1Ωcm. 
 Processing speed: currently O(10um/s), aim to speed up and/or 

parallel processing of wires.
 Wire thickness / uniformity: Little data available, needs more 

research effort.

 Optimization of internal electric field
 Geometry: Recently internal cage structure optimise E field.
 Will explore the full potential (see later slides).

 Radiation hardness: 
 Need to check predictions with latest devices. 
 25um cells in 3D.
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Resistivity challenge
 Laser wave front 

shaping helps to 
decrease resistivity.

 Dependence on 
processing 
parameters being 
studied.

 More research 
needed to lower 
resistivity.
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Carrier lifetime challenge –
3D diamond detectors

 Low field regions 
might effect 
transit time.

 Preliminary 
simulations show 
not a concern 
due to diffusion.

 More work 
needed to 
quantify impact 
of radiation 
damage.
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3D diamond detectors: Radiation challenge
 Few radiation hardness data available, but promising:
 Compare signal loss in 3D pixels to published results from planar
 3D sensors collect twice as much charge when unirradiated
 3D sensors see 5±10 % reduction in signal at 3.5 x1015

 Planar sensors see 45±5 % reduction for 3.5 x1015
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3D cell size:
50um x 50um



3D diamond detectors
Geometry challenge

 Laser processing allows any 
geometry, including 
horizontal wires. 
 Exiting possibility to optimise

the electric and weighting 
field.

 Small cell sizes realizable, wire 
diameter at abut 1µm.

 Simulation studies currently 
ongoing.

 Future research in this area:
 Optimise geometry
 Wire processing
 cell sizes  <(25µm)2

 Simulation – Prototyping –
Characterization.
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3D diamond detectors:
Characterization challenge
 TPA demonstrated.

 More accurate ionization profiles 
possible using same beam shaping 
techniques as in production of 
wires. 

 Research needed to fully exploit 
technique for characterizations.
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3D diamond detectors
Simulation challenge

 Lack of build-in models, 
especially pCVD and traps / 
polarisation in current TCAD 
tools being addressed.

 Need effort to improve 
simulations:
 polycrystalline CVD diamond, 

grain boundaries.
 graphitic wire simulation
 radiation damage
 new geometries
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3D diamond simulation examples from RD42



3D diamond detectors
Devices in future experiments
 The BCM’ phase-2 project of ATLAS will feature a small 

area 3D diamond detectors.
 Prove technology readiness for small cells.
 Stepping stone for larger area application. 
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3D diamond detectorplanar diamond detector



3D diamond detectors
Possible FCC devices 

 3D seems to be a viable option to enhance radiation 
tolerance.

 Radiation hardness requirement and resulting λ dictate 
cell size. 

 Cell size determined by wire-diameter (1µm) and cell 
capacitance.

 (25µm)2 or even below seems feasible. 
 Loss of efficiency small at 1017 peq

25 ÷ 2 × 2 = 18 µm drift path vs λ=18 µm
 Leakage current not an issue.

 Main technological challenge for large scale application 
is the scaling of wire production. 
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Research Challenges for the next 20y
Summary

 Polycrystalline CVD diamond.
 Collection distance 25% increase.
 Decrease price by 50% (happens with larger use as in Si).

 Radiation tolerance.
 Go to smaller cell size.
 True 3D field electrodes (internal cages) offer huge potential to 

optimize electric field distribution to minimize drift time.
 Also offer possibility of gain in diamond.

 Processing of 3D graphitic wires in diamond.
 Reduce resistivity.
 Scale production capability.
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Discussion
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