Time-of-flight technologies

Roger Forty (CERN)

Introduction
1. Scintillator
2. Gaseous
3. Silicon
4. Cherenkov
General considerations
Time-of-flight principle is conceptually simple: measure difference in arrival time of particle at two planes $t = t_1 - t_0$ then velocity: $\beta = L / ct$

Combine with a measurement of its momentum: $p = \beta \gamma mc$

Mass of particle can then be calculated:

$$m^2 = \frac{p^2}{c^2} \left(\frac{c^2 t^2}{L^2} - 1 \right)$$

At high energies particles are relativistic: velocity saturates $\rightarrow c$, time difference drops fast

Focused on long-lived charged-particle identification (e, μ, π, K, p) in particular charged hadron separation at low momentum

The time for a kaon to travel 10 m is 33.37 ns at 10 GeV, while for a pion it would be 33.34 ns: the difference is only 35 ps

The separation in standard deviations: $N_\sigma \approx \frac{|m_1^2 - m_2^2|}{2 \sigma_t c} L$
Motivation (1)

- European Strategy for Particle Physics: the next future collider should be an e^+e^- Higgs factory → expect this to be a focus for the R&D Roadmap

- Dedicated particle identification detectors have been absent from the designs of experiments, until recently — main focus has been on Particle Flow calorimetry and lepton ID, rather than hadron ID

- However, they do all feature excellent dE/dx from tracker (or even more performant cluster counting dN/dx)

 Drawback for particle ID is region where dE/dx curves cross at around 1-2 GeV for p-K-π separation

- Combination of a modest TOF detector can cover this hole, provides PID up to a few GeV, complemented with dE/dx at higher momenta

- Here assumed 100 ps/hit, over 10 layers of calorimeter
Complications

- Energy loss + multiple scattering between the IP and TOF detector → track length and momentum measurement biased → minimize material before TOF detector
- Combining signals within a layer, and between layers, of the TOF detector requires care (see example illustrated)
- Dedicated TOF detector placed after tracker but before calorimeter → its own material budget should be limited
- Increasing the path length improves TOF (linearly), but the area to be covered by the detector increases as the square → detectors typically need to cover large areas, cost-effectively
- Radiation tolerance is an issue for application at hadron colliders
- Start time \((t_0)\) needed, from dedicated detector or elsewhere
- Electronics: balance between time resolution, spatial resolution, data rate and power consumption
- System issues: synchronization over a large area challenging
Motivation (2)

- Highest priority of ESPP is of course the full exploitation of the LHC Upgrades of ATLAS & CMS for HL-LHC: R&D now ≈ complete
 However, future upgrades still planned: for LHCb & ALICE at least
- Excellent hadron ID is essential for flavour physics, and there is an broad future programme planned—likely to increase in priority if recent evidence of Lepton Flavour non-Universality persists
- RICH detectors are the technology of choice at high momentum
 But limited coverage <10 GeV with gas radiators (unless pressurized)
 Silica aerogel as radiator might cover the low-momentum end, but (due to its low density) gives few photons, difficult reconstruction in the busy environment of the LHC → abandoned by LHCb
- Pushing TOF to 10 ps per track over 10 m path would cover region up to 10 GeV for K-π separation → target for LHCb future upgrade
- One can dream of pushing further towards the picosecond level → cover the full range of particle ID required, with a single system (but bear in mind, 1 ps = 300 µm at the speed of light)
Fast timing

• Fast timing has *many* other applications beyond TOF particle ID
• A fast timing revolution is underway, as detectors that traditionally have been spatially segmented now add time as an extra dimension: typical target is 30–50 ps resolution/MIP

• This has been driven by *pile-up* suppression in hadron colliders—in particular the unprecedented challenges of the HL-LHC: signal events will have up to 200 min-bias collisions superposed Can be separated by binning in *time* as well as *space*

• **4D tracking** \((x,y,z,t)\), and **5D calorimetry** \((x,y,z,t,E)\):
 Contribution to tracking pattern recognition, shower analysis—imagine going from a static image of showers, to a movie where neutral hadrons arrive later than the photons, etc.

• Timing can also extend physics reach, e.g. for long-lived particle (LLP) reconstruction—a booming field of dark sector searches

• This extends well beyond the TOF application (e.g. see ≈ all of the other task forces) → should drive synergy in the R&D roadmap
Resolution

- Contributions to timing resolution:
 \[\sigma_{\text{total}}^2 = \sigma_{\text{det}}^2 + \sigma_{\text{elec}}^2 + \sigma_{\text{clock}}^2 \]

 - Example of LHC end-cap timing layers: the detector contribution \(\sigma_{\text{det}} \) comes from Landau fluctuations in the silicon sensors.
 - The electronics contribution \(\sigma_{\text{elec}} \) has following components:
 \[
 \sigma_{\text{elec}}^2 = \left(\frac{t_{\text{rise}}}{S/N} \right)^2 + \left(\frac{V_{\text{thr}}}{S/t_{\text{rise}}} \right)_{\text{RMS}}^2 + \left(\frac{TDC_{\text{bin}}}{\sqrt{12}} \right)^2
 \]
 Jitter Time walk TDC binning
 - Need fast signal and excellent \(S/N \)
 LGAD gain: increase signal \(S \), but keep noise \(N \) under control
 Contribution from the TDC bin width, must also correct for integral non-linearity (INL, from uneven bin sizes)
 - The clock contribution (needed to synchronize detector) \(\sigma_{\text{clock}} \)

- Other contributions: transit-time spread (TTS) in photodetectors, pixel size, emission point of photon in radiator, start-time \(t_0 \), chromatic effects, cross-talk, etc. → Careful calibration is essential

\[\sim 40 \text{ ps} = 25 \oplus 25 \oplus 15 \text{ ps} \]

[Target resolution for timing layer, ATLAS-TDR-031]
Many of the technologies used cross over with other disciplines, from tracking to calorimetry, and use the sensors discussed elsewhere in this (and the other) task forces.

1. **Scintillators**: classic solution, now developed for timing layers (TF5+6, SiPM)
2. **Gaseous detectors**: multigap RPCs, new ideas to push timing resolution with MPGDs (TF1)
3. **Silicon detectors**: recent development of LGADs for end-cap timing layers (TF3, LGAD)
4. **Cherenkov-based detectors**: pushing for ultimate resolution (MCP)

Cannot cover exhaustively, instead selected a few examples to illustrate detector systems (existing / in preparation / future development) for each technology + will have to pass quickly over detectors that have been covered elsewhere

Tried to include detectors mentioned in the questionnaire responses, apologies for any omissions + bias toward experiments discussed at CERN—this symposium is opportunity to gather missing input

Disclaimer: references given to where information collected, rather than original sources —thanks to all who have provided material
1. Scintillators

- Fixed-target experiments have geometry well adapted to TOF. Take as example **NA61** (SHINE), flight distance 13 m.
- Most recently added scintillator hodoscope: Forward-ToF 2.5 cm-thick bars of plastic scintillator (Bicron BC-408) rise time 0.9 ns, decay time 2.1 ns, attenuation length 210 cm.
- Read out at both ends with fishtail PMMA light-guides to 2” photomultipliers (Fast-Hamamatsu R1828).
- TOF resolution ~110 ps.

S. Afanasiev et al., CERN-EP/99-001

dE/dx + TOF combined (5-6 GeV, NA49 Pb-Pb)

Roger Forty N Abgrall et al 2014 JINST 9 P06005

N Abgrall et al 2014 JINST 9 P06005

Roger Forty

TOF technologies
T2K Near Detector upgrade

- The near detector of T2K (long-baseline ν experiment) is being upgraded
T2K Near Detector upgrade

• The near detector of T2K (long-baseline ν experiment) is being upgraded
• TOF system required to give unambiguous determination of the flight direction of charged particles, to ensure tracks come from ν interaction

• 1 cm-thick cast plastic scintillator bars (EJ-200) read out by array of large area SiPM (6 × 6 mm2 Hamamatsu S13360-6050PE MPPC)

• SiPM: compact, robust, insensitive to B field, operate at low voltage, low power consumption, photodetection efficiency up to 40%; *Drawbacks:* high dark count rate (DCR), radiation sensitivity → cooling

Similar solution explored for PANDA TOF, with smaller scintillator tiles/rods

Overlapping scintillator bars

SiPM array (MUSIC readout)

~ 130 ps resolution

T. Lux, SPSC 13/4/21

C. Betancourt et al, JINST12 (2017) P11023
CMS Timing Layer

MIP Timing Detector (MTD)

Barrel (BTL) instrumented with scintillator bars Endcaps (ETL) with silicon detectors (LGAD)

Technology selected according to requirements:

Both detectors cost ~ 10 MCHF, but...

BTL covers $3x$ area of ETL with $25x$ fewer channels

However, it would not handle $10x$ higher radiation
CMS Barrel Timing Layer

- Faster scintillators: LYSO:Ce (Lutetium Yttrium Orthosilicate crystals doped with Cerium): excellent radiation tolerance, high light yield (∼ 40,000 photons/MeV), fast scintillation rise-time (< 100 ps), relatively short decay-time (∼ 40 ns)

- Well-established in PET scanners: excellent cross-fertilization! TOF also very relevant there: provides resolution along line-of-flight

- 166k LYSO crystals readout with SiPMs at each end, attached to the inner wall of Tracker Support Tube (r = 1.15 m, length = ±2.6 m) → has to be installed before tracker

- Thermoelectric coolers to improve SiPM radiation tolerance: run at -45°C

- Time resolution: 35 ps at start and 60 ps by the end of HL-LHC

Time-of-flight particle ID as a “bonus”: 2σ K-π separation up to p ~ 2 GeV
Quantum fast-scintillator R&D [see TF5]

- Colloidal Quantum Dots irradiated with a UV light: different sized nanoscale dots emit different colours of light due to quantum confinement
- Semiconductor scintillator based on InAs Quantum Dots functioning as luminescence centres embedded in a GaAs matrix can have uniquely fast scintillation properties with low self-absorption
Quantum fast-scintillator R&D [see TF5]

• Colloidal Quantum Dots irradiated with a UV light: different sized nanoscale dots emit different colours of light due to quantum confinement

• Semiconductor scintillator based on InAs Quantum Dots functioning as luminescence centres embedded in a GaAs matrix can have uniquely fast scintillation properties with low self-absorption

• Related R&D pursued by RD18 (Crystal Clear) [see E. Auffray, TF5]
 CdSe nano-platelets deposited on LYSO substrate → faster response

• Challenge to produce large-scale samples: **3D printing** of scintillator being investigated, to produce arbitrary shapes

Cadmium selenide nano-platelets

R. Turtos et al., JINST 11 (2016) P10015

YAG (voxel size ~ 50 x 50 x 10-50 μm)

G. Dosovitky, Kurchatov Institute
2. Gaseous detectors [see TF1]

- **Multi-gap RPC** well-established technique, excellent timing, easily segmented, work in strong magnetic field, relatively easy to build e.g. ALICE TOF
- Stacks of 1 mm glass plates, total of 10 gas gaps of 250 μm
 - High resistivity plates required (> $10^{10} \, \Omega \text{cm}$) to limit discharge area
- Gas used is $\text{C}_2\text{F}_4\text{H}_2 + \text{SF}_6 + \text{C}_4\text{H}_{10}$
- Timing resolution 56 ps achieved

3.7 m from IP
150 m2 total area!
1638 modules

F. Carnesecchi, arXiv:1806.03825
Gaseous-detector R&D

- **MRPC** are in widespread use for TOF systems: upgrade of NA61, proposals SHiP and Water Cherenkov Test Experiment @CERN HADES@GSI, EMPHATIC@Fermilab, E50@J-PARC, BGOegg@Spring-8, CBM, STAR...

- Developments towards:
 - faster timing (e.g. increasing number of gaps)
 - Higher rate capability: managing gas flow, glass resistivity

- Fast timing micro-pattern gas detectors also being developed e.g. FTM based on the µ-RWELL structure [see P. Verwilligen, TF1]

- ~300 ps resolution seen for simulation [Y. Maghrbi et al, NIMA 954 (2020) 161666]

- Alternative approach: couple Cherenkov radiator to MPGD

Roger Forty
TOF technologies
C. Williams, AiDAinnova 14/4/21
M. Hartz, SPSC 13/4/21
PICOSEC development

- Hybrid detector: Cherenkov signal (CsI PC) amplified via MPGD
 Developed with RD51 [see next talk, F. Tessarotto]

- Micromegas: 80% Ne + 10% C₂H₆ + 10% CF₄ (COMPASS gas)
 Signal has two distinct components: fast electron peak (≈ 0.5 ns)
 slow ion tail (≈ 100 ns)

- Now working on detector stability, photocathode robustness (DLC, nano-diamond), large-area coverage: 10x10 pad module planned
 Considered for muon system of ENUBET (R&D for tagged ν beam)

24 ps for muons
(≈ 10 p.e./muon)

J. Bortfeldt et al, NIM A 903 (2018) 317
3. Silicon detectors [see TF3]

- Low-gain avalanche diodes (LGAD) are currently the silicon detectors of choice for fast timing, adopted by ATLAS/CMS. Initial idea was for “APD with low gain” to compensate for charge loss after irradiation [P. Fernandez, PhD thesis 2014]

 Multiplication layer adds modest gain x10–20: improves signal slope while keeping noise under control

- Early adopter: HADES prototype beam telescope
 150 µm strips, provides start time t_0 for TOF system

 Corresponds to 47 ps/hit

 S. Grinstein, IAS-HEP 2021

Insensitive area around gain layer
Junction Termination Extension (JTE): 50-100 µm
limits ability to achieve fine pitch

ATLAS/CMS use 1.3 x 1.3 mm2 pads
Need to scale up from ~cm2 to ~10m2 area

ATLAS Timing Layer

- High Granularity Timing Detector (HGTD) for the end-caps (similar design for CMS ETL, some common development)
- Active area: $12 \text{ cm} < r < 64 \text{ cm}$, 2 disks per side, each supporting double $50 \mu\text{m}$ sensor layers: 15×30 pads of $1.3 \times 1.3 \text{ mm}^2$
- Bump-bonded to readout ASICs, flex tail to outer-radius electronics
 Cooling plate operates at -30°C: evaporative CO$_2$, 20 kW/endcap
- Maximum fluence: $2.5 \times 10^{15} \text{ MeV n}_{eq}/\text{cm}^2$, 2 MGy by end of HL-LHC
 Inner ring will be replaced every 1000 fb$^{-1}$ due to radiation damage
 Layout optimised for uniform performance vs radius

Cross-section of disk

Effect of irradiation

3.6 M channels, 6.4 m2, 30-40% X_0
Fast silicon R&D

• Very active area, in the framework of RD50 and elsewhere: LGAD stability after heavy irradiation remains a concern → increase radiation tolerance further + achieve finer granularity + push timing

For single (thin) layers, timing resolution < 20 ps has been achieved
Would be difficult to achieve for a large system? [discussion at TF3]

• **AC-LGAD**: gain layer charge coupled capacitively to surface through thin (~ 500 nm) oxide layer, segmentation provided simply by surface electrodes
Excellent spatial resolution can be achieved via charge-sharing

Also Deep Junction (DJ-LGAD), Trench isolated (TI-LGAD), Inverse (iLGAD)...

• Other approaches to fast timing in silicon may also compete: 3D, Timepix...
Solid-state Electron Multiplier (**SSEM**): amplification layer obtained via a GEM-like metal structure embedded within the silicon bulk

LGAD timing

Y. Zhao et al, NIM 924 (2019) 387

3D silicon

Silicon prospects

- **ALICE3**: new detector based around CMOS MAPS (Monolithic Active Pixel Sensors) under study for the HL-LHC era

 TOF resolution < 20 ps needed at system level, requires advances both on sensors and microelectronics [L. Musa, input symposium 19/2/21]

- **Belle II** detector upgrades planned in ~2026: pile-up suppression not an issue for e⁺e⁻ colliders, but use of timing layer under consideration to cover gaps between radiator bars of TOP detector

- **EIC**: now an approved project, detector technologies not yet fixed

- **FCC-hh**: pileup 1000, timing requirement to mitigate even more severe: resolution < 10 ps required “or very clever new ideas needed…”
 [M. Aleksa, input symposium 19/2/21]

 + radiation dose 10x higher—but there is time for R&D, technical design would only start in O(15 years)

- **Muon collider** experiments: fast timing at 10 ps level needed to reject beam-induced background [N. Pastrone, input symposium 19/2/21]
4. Cherenkov-based detectors

- Cherenkov radiation is prompt, ideal for ultimate timing: detect photons rather than charge.
- Adding timing to RICH detectors: only available for particles which are above threshold → main use is for background suppression there, at least for gaseous radiators. Room for clever ideas with aerogel? but few photons → use solid quartz (synthetic fused silica).

ATLAS Forward TOF: L-shaped bars

- **ToF:** Cerenkov 4 Trains × 4 Bars
- **σ_x ≈ 30 ps/Bar**
- **SiT:** 3D Pixels
 - 50μm(x) × 250μm(y)
 - σ_x ≈ 7 μm/track

Another example: EMPHATIC t_0 counter

- **Resolution of 6A**
 - Entrain: 25253
 - Mean: -9.286
 - σ: 0.02764
 - z / r (μm): 87.33 / 18
 - Constant: 0.000001
 - Mean: 0.0215 ± 0.0000 ± 0.00018

T. Sykora, INSTR2020

- **Excellent performance ~ 20 ps**, but for a small system—how can this be achieved over large areas?
LAPPD development

• One approach is to develop large-area picosecond-level photodetectors and use to time Cherenkov light produced in their entrance window

• LAPPD™ development: use cheaper MCP-PMT components to limit cost e.g. borosilicate float glass + ALD treatment, strip-line readout
 Now commercialized by Incom Inc.

• Adopted by ANNIE (Accelerator Neutrino Neutron Interaction Experiment): water-Cherenkov neutrino experiment at Fermilab with 30 tons of Gadolinium-loaded water, to help in their muon reconstruction

• Also explored as a timing layer at shower-max in the LHCb calorimeter upgrade: 18.6 ps timing resolution achieved for 5.8 GeV e⁻ test beam

• Second generation under development with capacitive-coupled anode to allow pad readout more suitable for high-rate environments
 Lifetime and B-field sensitivity? [see talk of K. Inami]

• Issue: although cheaper than traditional MCPs, they are not that cheap
 Tiling a large area is currently still prohibitive, $O(1 \text{ MCHF/m}^2)$
DIRC evolution

• To avoid tiling the full area, propagate the photons to photodetectors located at the edge using total-internal reflection in highly-polished quartz radiator [see previous talk, J. Schwiening]

• Issue to be handled: chromatic dispersion of the material—trade-off between photon bandwidth to increase yield, vs resolution

From $E_\gamma = 2–4 \text{ eV}$, refractive index changes $\Delta n = 7\%$

Over 1m propagation \rightarrow time difference $= 300 \text{ ps}$

• FDIRC: demonstrated use of photon timing to improve the Θ_C resolution, adapting BaBar DIRC

• TOP: time-of-propagation detector of Belle II timing vs position enhances K-π separation

• Disc DIRC (PANDA): move from bars to planar geometry

• These elements all brought together for TORCH concept
TORCH concept

- **TORCH** (Timing Of internally Reflected CHerenkov light) uses polished 1-cm thick quartz plate as radiator (~10% X_0) Measure precisely arrival time and position of individual photons, and combine to measure track arrival time

- Requires ~1 mrad precision on angle of photon, so that path length in radiator can be reconstructed: focused with a cylindrical lens onto fine-granularity pixellised detector

- **Key innovation:** measured Cherenkov angle used to correct dispersion: $n = 1/\beta \cos \Theta_C \rightarrow$ effectively determine wavelength for each photon i.e. Cherenkov angle is used to correct timing (cf DIRC, where timing is used to correct the Cherenkov angle)

- Resolution on photon arrival time has contributions from pixel size and photodetector (intrinsic + electronics)—target to keep each ~50 ps, giving overall resolution 70 ps per photon

On average 30 photons detect per track through radiator → per-track resolution of 10-15 ps — if independent some uncertainties (e.g. from track) common between p.e.
TORCH in LHCb

- Proposed for upgrade of LHCb in ~2027 for HL-LHC (Upgrade 2) \(\rightarrow \) needs to handle luminosity \(\sim 10^{34} \text{ cm}^{-2}\text{s}^{-1} \)
- Location after tracker, before RICH2 which will be upgraded at same time [see talk of C. D'Ambrosio] \(\rightarrow \) flight path 10 m, area 30 m

- **Practicalities**: subdivide into identical modules, reflection off sides to reach photodetectors at top/bottom edge
- Performance (full simulation): clean K-\(\pi\) separation up to 10 GeV as required
TORCH development

- TORCH concept has been tested using ≈ full-size prototype
- Instrumented with two 512-channel MCP-PMT photodetectors
 Campaign of measurements with low-momentum π/p beam from SPS
 → Target of 70 ps timing resolution per detected photon achieved
- **Next step:** confirm that combination gives expected VN_{pe} behaviour
 → prototype will be fully instrumented with MCP-PMTs for further tests

![TORCH prototype](image)

Project along time axis

![Time vs position (for one MCP column)](image)

Time vs position (for one MCP column)

$\sigma_t = 70$ ps/pe

M. Kreps, ICHEP2020
Cherenkov-based TOF prospects

- **Forward TOF** of ATLAS is being upgraded for the next run
- **TORCH** features in Framework-TDR for LHCb upgrade \(\to\) LHCC, 9/2021
- Interest for \(e^+e^-\) Higgs factory designs—the circular ones at least perhaps due to their phenomenal \(Z \to b\bar{b}\) statistics

Conceptual layout for use of TORCH in an **FCC-ee** experiment:
Flight distance < LHCb \(\to\) TOF lower, but TOP increases (they add)

- Also for future fixed-target/beam-dump experiment proposals:
e.g. **TauFV**: search for LFV \(\tau \to \mu\mu\mu\) in beam dump at the SPS

- **Related concept**: **DTOF** at Super Tau Charm facility [B. Qi et al, arXiv:2104.05297]
similar to FTOF detector proposed for SuperB [N. Arnaud et al, NIMA 718 (2013) 557]
General considerations

- End with discussion of some more general aspects relevant to different technologies, where R&D is in progress/needed

Focus on issues relevant to this task force, illustrated with examples from work on TORCH that I know best

Radiator/detector material [see talks of I. Idachi, J. Schwiening]

- Quartz: needs high clarity, radiation tolerance, surface quality, polishing to sub-nm surface roughness—currently a cost driver

- Larger area plates: would allow module size to be adapted to track occupancy in LHCb

- RPC gas systems: [see TF1] target leak free + gases with reduced environmental impact:

 B. Mandelli, TF1
Sensors

- For silicon see TF3, for scintillator see TF5+6; fast photodetectors: MCP-PMT and SiPM [see talks of K. Inami, S. Korpar, Y. Musienko]

- For MCP: push towards finer granularity, lifetime, rate capability, etc. Connectivity: e.g. using anisotropic conductive foil (ACF)
 Fast + longer lifetime MCPs relevant for future high-intensity kaon experiments

- For SiPM: naturally fine granularity, but developments to improve active-area, radiation tolerance, noise, adjust spectral sensitivity

- Increasing quantum efficiency increases photon yield (+ occupancy)
 Cherenkov spectrum ~ flat with photon energy → extending toward UV can increase yield, but requires control of full optical system

TORCH MCP-PMT (developed with Photek)

60 mm
Front

Back

Bare back

64 x 64 anode pads

Roger Forty

TOF technologies

K. Matsuoka, RICH2016

M. van Dijk, CERN-THESIS-2016-039
Readout electronics [see TF7]

- **NINO + HPTDC** chipset developed in 2004 (0.25 μm CMOS) for ALICE TOF, and now widely used—also for single p.e. although intended for the larger charge of MRPC signals
 - TDC: 32 channels for 100 ps bins, or 8 ch for 25 ps bins

- **FastIC + PicoTDC** successors recently developed (65 nm) [R. Ballabriga, J. Christiansen et al, Users meeting] —many potential clients
 - FastIC addresses NINO limitations (non-linearity of energy measurement, power consumption) suitable to operate with SiPM, PMT, MCP, i.e. a wide range of detector capacitances
 - PicoTDC has increased channels (64 ch), finer binning (12/3ps)

- **ASICs for LHC timing layers** (130 nm): HGTD front-end **ALTIROC**
 - MTD-BTL uses **TOFHIR** ASIC developed from TOFPET
 - MTD-ETL uses **ETROC**; baseline for distributing the clock is to use DAQ links (**lpGBT**, 65 nm)

CMS developing a backup distribution system: pure clock link
- Requires development of a rad-hard fan-out ASIC and board and deployment of ~ 2000 additional fibres
Start time

- To determine the time-of-flight a start time (t_0) is required.
- This may be achieved using timing information from the accelerator, but if bunches are long (~ 20 cm at the LHC) → have to correct for vertex position.
- Can use a dedicated detector, e.g. the T0 detector of ALICE and those shown earlier from HADES and EMPHATIC or e.g. a vertex detector (if equipped for fast timing).
- Alternatively use other tracks in the event, from the primary vertex—as also done by ALICE, due to limited T0 acceptance.
- Most PV tracks are pions, so for TORCH the reconstruction logic can be reversed, and the start time determined from average of tracks from primary vertex assuming they are π.
 Outliers from other particle types removed, iteratively → Should be able to achieve few-picosecond resolution on t_0 from the detector itself, using the other tracks in the event.
Conclusions

• Development of TOF technologies is currently booming with general interest in **fast timing**
 Provides a very compact particle ID detector, e.g. suitable for collider experiments

• Well-established technologies: **scintillator** hodoscopes and **MRPCs** with resolution $O(100 \text{ ps})$
 good for covering low momenta up to a few GeV, e.g. complementing dE/dx from trackers

• Fast-timing detectors developed for the LHC upgrades: fast scintillators and **LGAD silicon**
 aim for 30-50 ps resolution for pile-up suppression, will also provide TOF particle ID as a bonus

• To achieve momentum coverage up to 10 GeV for K-π separation (to complement RICH coverage)
 requires pushing beyond current state-of-the-art, towards 10 ps resolution
 – Cherenkov radiators very suitable: **PICOSEC, LAPPD** and other approaches under development
 – **TORCH** achieves this by combining many photons per track, with modest individual resolution
 – Scintillators this fast (e.g. quantum R&D) would be breakthrough for **TOF-PET**: mm-resolution

• Long-term goal to reach **picosecond-level** timing, could satisfy the **full** particle ID needs
 – Requires vigorous R&D on radiators, sensors, electronics
 – System aspects will become increasingly more important

→ Fast timing should feature strongly in the R&D Roadmap + reserve some space for new ideas!