Multisensor and networked detection

Giovanni Barontini

University of Birmingham

ECFA symposium

Networked AMO quantum sensors

Atomic clocks

Atom interferometers

Magnetometers

Light interferometers

Networked AMO quantum sensors

Atomic clocks

Atom interferometers

Magnetometers

Light interferometers

Background

- The Standard Model and General Relativity are very successful theories, but the SM only accounts for 5% of the energy balance of the Universe
- We don't know much: DM searches in the laboratory should be unbiased and as wide as possible
- WIMP searches have been unsuccessful so far, DM searches are then moving towards well-motivated DM candidates with smaller masses
- Precision measurement techniques based on AMO quantum sensors are well suited to look for DM candidate with masses <10⁻⁹ eV

Background

 Light DM candidate have large mode volume occupation number -> can be treated as classical fields

• QCD Axions and ALPs
$$\mathcal{L}_{axion} \supset \sum_f \frac{c_f}{\Lambda} \partial_{\mu} a \, \bar{f} \gamma^{\mu} \gamma^5 f \rightarrow \mathbb{H} \propto \sum_f \nabla a \cdot S_f$$

• ∇a acts as a pseudo magnetic field -> can be detected by atomic magnetometers

• Scalar fields
$$\mathcal{L}_{scalar} \supset \frac{\phi^n}{\Lambda_\gamma^n} F_{\mu\nu} F^{\mu\nu} - \sum_f \frac{\phi^n}{\Lambda_f^n} m_f \bar{f} f$$

• Λ^n_{γ} alter the fine structure constant α , Λ^n_f the fermionic masses -> manifest as variations of fundamental constants

Look for variations on different timescales

Oscillations

Fast transients

Slow drifts

Networking quantum sensors

 The <u>only</u> possibility of detecting <u>transient</u> events such as topological defects, solitons, Q balls and dark stars

• Oscillations of dark matter fields at different locations as long as the distance is below the coherence length (100 km: mass ~10⁻⁹ eV)

 Sensors with similar sensitivities and different systematics are necessary to confirm any measurements and reject false positives

- Using multiple sensors increases the detection confidence and sensitivity
- Multimessenger detection, discriminating between different couplings

Networked magnetometers

GNOME -> Dima @ 11:30

- A global network of magnetometers to look for transient events on the global scale [Afach et al, arXiv:2102.13379v2]
- Synchronisation with GPS
- Grown and developed in the last ~10 years
- 9 magnetometers, ~ 1 month measurement campaign
- Topological defects in ultralight DM fields with size $d = \frac{\hbar}{m_a c}$

Networked Atomic clocks

->Marianna @ 12:00

->David @ 12:30

Which fundamental constants?

- Atomic clocks measure with extreme precision atomic and molecular spectra
- Spectroscopy lends itself to measure variations of:

$$CC = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{\hbar c}$$

• Different clocks have different sensitivities to variations of α and μ

$$\frac{\delta\omega}{\omega} = K_{\alpha} \frac{\delta\alpha}{\alpha} + K_{\mu} \frac{\delta\mu}{\mu}$$

Clocks are "naturally" networked, need to compare at least 2

Fast transients (satellites)

• GPS.DM: Use the GPS constellation to look for transient events on the global scale [Roberts et al, Nat. Comm. 8, 1195 (2017)]

- Topological defects in scalar DM fields with size $d=\frac{\hbar}{m_{\phi}c}$, quadratic coupling $\phi^2 o_{SM}$
- Huge set of data to look at, also for oscillating DM fields
- Integrate with other satellite constellations and terrestrial clocks (check atmospheric shielding [Wolf et al. PRD 99, 095019 (2019)])

Fast transients/oscillations ("offline")

• NIST-SYRTE-KL FAMO-NICT: measurements time stamped and correlated "offline" [Wcislo et al, Sci. Adv. 4, 4869 (2018)]

- Local atom-cavity comparison (different sensitivity to variations of α)
- Quadratic coupling for transients, linear for oscillations, two orders of magnitude improvements on previous constraints
- Easy kind of network to expand. Signals are weighted by their inverse variances.
- Considerable scope to do better with high precision clocks that run for longer (the current four clocks only ran for between 11 and 54 days over the course of a year)

Fast transients (optical fibre network)

 NPL-SYRTE-PTB: realising a "superdetector" connecting clocks with dark fibres [Roberts et al, New J. Phys. 22, 093010 (2020)]

- Comparing clocks with different sensitivities to variations of α
- Clock-clock comparisons over optical fibres features excellent longterm stability
- Previously unconstrained parameter space for quadratic coupling
- Longer measurement time (40 days so far), nested networks

QSNET (fibre network)

- NPL-UoB-ICL-UoS: a network of clocks with enhanced sensitivity to variations of fundamental constants [https://qsnet19.wixsite.com/home]
- "Exotic" clocks: HCI, molecules -> Marianna @ 12

Clock		Κα	Κμ
Higly-charged ion clock	Cf ¹⁵⁺ (775 nm)	59	0
Atomic clock	Yb ⁺ (467 nm)	-5.95	0
Molecular ion clock	N ₂ ⁺ (2.31 μm)	0	0.5
Molecular clock	CaF (17 μm)	0	0.5
Atomic clock	Sr (698 nm)	0.06	0
	Cs (32.6 mm)	2.83	1

- "Disentangle" and identify correlations between variations of lpha and μ
- A common, stable, and insensitive frequency reference (the Sr clock at NPL), against which all the clocks of the network can measure variations

Possibilities and challenges

Investigate very light scalar and pseudo-scalar DM candidates over ~10 orders of magnitude in mass and different couplings

- Expand the networks
 - Increase number of clocks and duty cycle to get better statistics. Sensitivity scales ad \sqrt{N}
 - Expand fibre networks, longer distances
 - Longer measurement campaigns, dedicated programmes
 - Next generation sensors, with enhanced sensitivity to detection of physics BSM
- Connect the networks
 - Multimessenger detection
- Quantum 2.0
 - Entanglement between sensors can give an advantage when measuring multiple non-commuting parameters of dealing with "nuisance" parameters [PRA 95, 012326 (2017)]
 - Creating a super-stable global network of clocks synchronized with entanglement [Nat. Phys. 10, 582 (2014)]
 - Need more measurement schemes

Timeline

Related topics

- Atomic clocks -> David
- Magnetometers -> Dima
- New clocks: HCls, molecules -> Marianna
- Nuclear clocks
- Dark fibre networks
- Other kind of detectors (AI, LI...)
- Space missions
- Entanglement (both local and remote)
- Other couplings
- Other implications of varying fundamental constants
- Data analysis/mining

Thank you