A theory perspective on ultra-light bosons

Asimina Arvanitaki Perimeter Institute for Theoretical Physics

Outline

• The origins of ultra-light boson fields

Cosmology-independent signatures of ultra-light boson fields

Ultra-light boson Dark Matter

Why ultra-light bosons?

 Bottom-Up approach: They provide a consistent theoretical framework for BSM physics to be contrasted with chameleons or modifications of QM

• Top-Down approach: They appear as byproducts in many BSM theories, like those trying to explain the flavor problem

• In this talk: My point of view of what constitutes an excellent top-down approach

Why is the Electric Dipole Moment of the Neutron Small?

The Strong CP Problem and the QCD axion

$$\frac{g_s^2}{32\pi^2}\theta_s\vec{E}_s\cdot\vec{B}_s$$

EDM ~ e fm θ_s

Experimental bound: θ_s < 10-10

Solution:

 θ_s ~a(x,t) is a dynamical field, an axion

Axion mass from QCD:

$$\mu_a \sim 6 \times 10^{-11} \text{ eV} \frac{10^{17} \text{ GeV}}{f_a} \sim (3 \text{ km})^{-1} \frac{10^{17} \text{ GeV}}{f_a}$$

f_a: axion decay constant

Mediates new forces and can be the dark matter

String Axiverse

AA, Dimopoulos, Dubovsky, March-Russell, and Kaloper (2009)

Extra dimensions

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid

$$e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$$

while

$$\vec{B} = 0$$

Energy stored only inside the solenoid

Non-trivial gauge configuration far away carries no energy

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid

$$e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$$
 while

$$\vec{B} = 0$$

Energy stored only inside the solenoid Non-trivial topology:

"Blocking out." the core still leaves a non-trivial gauge, but no mass Non-trivial gauge configuration far away carries no energy

A Plenitude of (Almost) Massless Particles

• Spin-0 non-trivial gauge field configurations: String Axiverse

• Spin-1 non-trivial gauge field configurations: String Photiverse

• Fields that determine the shape and size of extra dimensions as well as values of fundamental constants: Dilatons, Moduli, Radion

Axion Couplings

Axion-photon mixing in a background field

• Axion have an EDM-like coupling to nucleons (in particular for the QCD axion)

• Axion spin coupling to leptons or nucleons $\frac{\nabla a}{f_a} \cdot \sigma$

 Scalar coupling to nucleons in the presence of CP violation (in particular for the QCD axion)

Dark Photon Couplings

Couples through mixing with the ordinary photon

$$\epsilon(\overrightarrow{E'}\cdot\overrightarrow{E}+\overrightarrow{B'}\cdot\overrightarrow{B})$$

• Dark photon decouples as its mass goes to zero

Moduli, dilatons and other scalars

• Couple non-derivatively to the Standard Model (as well axions with CP violation)

Examples of couplings

$$\mathcal{L} = \mathcal{L}_{SM} + \sqrt{\hbar c} \frac{\phi}{\Lambda} \mathcal{O}_{SM}$$

$$\mathcal{O}_{SM} \equiv m_e e \bar{e}, \ m_q q \bar{q}, \ G_s^2, \ F_{EM}^2, \dots$$

Current astrophysical and laboratory constraints

10-16

10-18

≈100 Hz

10-10

10-8

10-6

10-12

10-14

10-6

10-9

10-20

Outline

• The origins of ultra-light boson fields

• The non-Dark Matter signatures of ultra-light boson fields

Ultra-light boson DM

Axion signatures independent of cosmology

Light shining through wall experiments

Axion signatures independent of cosmology

Searches for long range forces

Monopole-Dipole Interaction

 $V(r) \sim \frac{1}{r^2} e^{-m_{\phi}r}$

Dipole-Dipole Interaction

$$V(r) \sim \frac{1}{r^3} e^{-m_{\phi}r}$$

Cosmology-independent dark photon signatures

Coupled cavity searches

Short range modifications of Coulomb's law

Cosmology-independent moduli signatures

Modifications of Newton's Law

• Fifth-force searches

$$V(r) \sim \frac{1}{r} e^{-m_{\phi}r}$$

• Equivalence principle violation searches

Cosmology-independent signatures of all bosons

Black hole super-radiance

Particle Compton Wavelength comparable to the size of the Black Hole

Outline

• The origins of ultra-light boson fields

• The non-Dark Matter signatures of ultra-light boson fields

• Ultra-light boson DM

The Mystery of Dark Matter

Ultra-light bosons as DM

- Self-consistent DM production mechanism
 - Misalignment for scalars $(m_{DM} > 10^{-22} \text{ eV})$ and inflationary production for dark photons $(m_{DM} > 10^{-5} \text{ eV})$

Large array of possible experimental probes

- All experiments are absorption experiments
 - Ultra-light DM is not necessarily stable

Axion Dark Matter

Some examples

• Axion-to-photon conversion (ex. ADMX)

Cavity size = Axion size

Axion Dark Matter

Spin precession experiments

EDM coupling of the axion

Spin coupling of the axion axion wind

Dark Photon Dark Matter

Couples similarly to a photon $|\overrightarrow{E}'| \sim 50 \frac{V}{cm}$

$$|\overrightarrow{E}'| \sim 50 \frac{V}{cm}$$

Shielding

Moduli Dark Matter

Causes variation of fundamental constants

- Makes the energy splitting of atoms and nuclei oscillate in time
 - Atomic clocks and atom interferometry searches

- Makes the size of atoms change in time
 - Resonant mass detectors and oscillator searches

Summary

• There is good motivation behind the possible presence of ultralight bosons

• They can be probed across a wide-variety of energy scales, even through their gravitational coupling alone

• They are excellent Dark Matter candidates

Signatures summary

Energy $10^{-22} \ eV$ $10^{-5} \ eV$ 10 eV Cosmology-independent observables New Forces and EPV All: Dark photons Light shining through wall and coupled cavity axions(+ magnetic field): BH superradiance All: Dark Matter search observables Spin-0 DM range Spin-1 DM range Axions: Spin precession and axion wind experiments Dark photons LRC circuit and resonant cavities axions(+ magnetic field): Atomic clock and atom interferometry Moduli: **Resonant-mass**

All:

Atomic and molecular absorption

Questions for discussion

• Is this list exhaustive?

• What about other theories of DM?

• Can you ignore astrophysical constraints? No

• How much do the searches depend on the structure of DM?

• What about fermions?