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Need to cover ~peV to ~ 10s of meV — wide, well motivated
mass space for QCD axions to make up dark matter



> 1 neV: ADMX and MADMAX projections
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< 1 peV: DM Radio Experiment Family
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“DMRadio-GUT: Probing GUT-scale QCD Axion Dark Matter."
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QCD axion: the need for quantum sensors

* Projected science reach at SQL shown in blue
* Assumptions made about experimental parameters (volume,
magnetic field strength) may change—only approximate!

QCD Axion Frequency
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See Dima’s talk



QCD axion: the need for quantum sensors

QCD Axion Frequency
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e This talk will cover electromagnetic-coupled axion detection technology for ~ 0.4
neV to ~ 400 meV (~ 100 kHz to ~ 100 GHz).

* Lower frequencies are inconceivably difficult (to get to DFSZ with EM coupling).

» Higher frequencies are probably massively multi-moded / radiatively coupled;

guantitative axion coupling theory not fully yet fully worked out, detector needs
are not rigorously defined yet.



Detecting the axion-photon
coupling

* Most searches probe axion-photon coupling
Liny XK aE - B
* Axion behaves as effective EM current density:

- N Ka — N
Ja(X,t) = — Z_BDC(x)ata(t)
fs
Signal
enhanced w/
resonator
Van Bibber,

Rosenberg, Physics
Today, 2006

MICROWAVE CAVITY




Electromagnetic Quantum Sensing Regimes

| Hz kHz MHz CHz THz )

] . .
Quantum upconverters :|:| Superconducting qubits

| B B Rydberg atoms
hf < KgT " hf > KgT

\, y

e Approaching the Standard Quantum Limit

* Squeezing

* QND photon counting

* Backaction evasion

* High-N Fock state preparation, entangled cavities...

* Also: pair-breaking detectors (TES, MKID, CEB, magcal)
going to lower frequency... 100 GHz?



>~ ueV: Ground State

hf > kgT
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* Ground state
* Cavity resonators (experimental scale of order of Compton wavelength)
e Scattering-mode amplifiers



<~ peV : High Occupation

hf < kgT
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* Thermal state
* Lumped LC resonators (experimental scale << Compton wavelength)
*  Op amp-mode amplifiers



HAYSTAC: Acceleration through squeezing
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Photon counting: pair-breaking detectors

TES, MKID, magnetic microcalorimeter,
CEB, etc.

See talks by Stafford Withington, Loredana
Gastaldo



Ground state measurement: QND photon counting
Akash Dixit, Aaron Chou, David Schuster

Repeatedly measure the clock frequency to determine
whether the cavity contains 0 or 1 photon:
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Use qubit as an atomic clock whose frequency
depends on the number of photons in the
cavity. The electric field of even a single

Photon Parity
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Ground state measurement: QND photon counting

DFSZ, 0.45 GeV/cc, B=14T, C=1/2, Q=5x10*@1GHz, V=1343, crit.coup
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Second regime: High Occupation
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Integrated sensitivity: the figure of merit for one mode

Example: single-pole resonator

* Science reach determined by integrated S BMEES EIECHENCy
sensitivity across search band /\

Resonator Line Shape
(Response Function for

* Figure of merit with quantum-limited DM 1 DM Drive)

amplifier:
e 1S31 (V)] :
US(v)] = jw d"(|521(v)|2n(v) + 1)

* |S,1(v)|? : transmission from dark- 7:/ | :
matter signal source to amplifier | e >

Resonator bandwidth I

(entry in scattering matrix S(v)) Sensitivity bandwidth

Thermal

Noise
IAmplifier

INoise

v
i

* n(v)=signal source thermal occupation
number S. Chaudhuri et al., arXiv:1904.05806 (2019).

e “+1” is standard quantum limit

* Asingle-pole resonator has nearly ideal integrated sensitivity
* Substantial sensitivity available outside of resonator bandwidth.
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Photon counting is useless when hf < kgT

e +/N thermal fluctuations in

the number of resonator
/ phOtOnS

Thermal + e Sensitivity not improved by
Zero-Point photon counting

Backaction — Need other techniques

mprecision

l¢ >1
Sensitivity bandwidth

Implement backaction evasion to reduce both imprecision and backaction
noise below the standard quantum limit, increasing the sensitivity
bandwidth to thousands of times larger than the resonator bandwidth
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Radio-Frequency Quantum Upconverters:
Analagous to Optomechanical Systems

LIGO: Axion detector with RQU:

'/ _______________ N '/ _________________ \‘
' b %L |
: ; 1, ... q : : /\ r :
I k I I
| ;@WNVLEIIV\/\/\/\)I:: O L X X X ::Cr:
7 l

v 7 > ! I\ —r P — ,I
N 7/ -

Same Hamiltonian for both systems (to first order in coupling)
= hwg(@'a+1/2) + hw,(bTh +1/2) + Hinr
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Electromagnetic sub-peV
axion searches presently use
dc SQUIDs in frequency range
kHz — 100 MHz.

The best dc SQUIDs in this
frequency range, coupled to
macroscopic resonant
circuits, are 20 times worse
than the SQL, and they
couple loss to the resonant
circuit.

A dissipationless sensor is
needed that can achieve SQL,
and conduct phase-sensitive
operations like backaction
evasion with electromagnetic
signals at audio-RF
frequencies.

RF Quantum Upconverters

Input tones Reflected tones

Frequency

Microwave
circulator

Microwave Readout

source amplifier
' =—C,
RQU
— % R, High-frequency
resonator
(~5 GHz)



RQUEs:
3-junction RQU

RF Quantum Upconverters

Input tones Reflected tones
Power ‘ ‘E\ | ‘;\
Frequency
Microwave

circulator

Readout
amplifier

Microwave
source

RQU

1-junction RQU

: R High-frequency
" resonator
(~5 GHz)

Cavity resonator RQUs:

R =
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 Data illustrating
upconversion in single-
junction RQUs

* Single-junction RQU
excited on resonance

* The signal information
is upconverted to
symmetric sidebands
on the microwave
carrier tone.

Data illustrating RF Upconversion
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Phase-Sensitive Upconversion

Microwave carrier

AN n 1 — Microwave carrier
x ‘ —— X quadrature envelope
\0 w

A(t) = 2(4/ D, ) cos w,t

If the carrier tone is amplitude
modulated in phase with the
X-quadrature of the input
signal, phase-sensitive
amplification of only the X-
guadrature is achieved.

l‘-:——_=__+_

Microwave Readout Signal

Clerk, New Journ. Phys. 10, 095010 (2008).

H=hwy(@'a+1/2) + hw,(bTh +1/2) + Hinr

AN A

Hint = —hAF® = —ﬁhﬁﬁ[i(l + cos(2w,t)) + ?sin(Za)at)]

If the carrier tone is amplitude modulated in phase with the X-quadrature of the
input signal, phase-sensitive upconversion of only the X-quadrature is achieved.
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Single-junction
RQU

Input: 50 kHz flux signal into
single-junction RQU

Carrier: 5.5 GHz sinewave
amplitude modulated at 50 KHz

Measure: output tone power as
a function of phase shift
between input sinewave and
AM modulation

Phase-Sensitive Upconversion Data

Tone power (dBm)
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* Necessary step towards full backaction evasion
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Conclusion: notional development timeline

Phase-
sensitive
upconverters
(RQUs)

Qubits / QND
photon
counters

Pair-breaking
photon
counters

SQL in deployed
experiment
(e.g. DM Radio 50L)

DM Radio-GUT

\

10y
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20dB

Close
this gap

Rydberg
atoms?
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