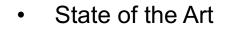
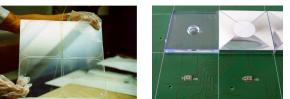
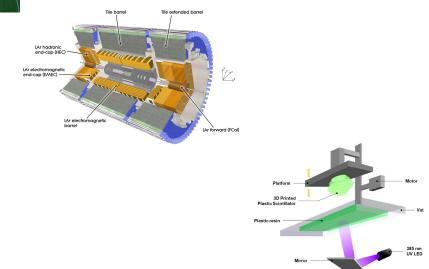


Katja Krüger (DESY)


ECFA Detector R&D Roadmap Symposium of Task Force 6 Calorimetry 7 May 2021


Overview


• Concepts: "Classic" vs "Integrated"

• The Future

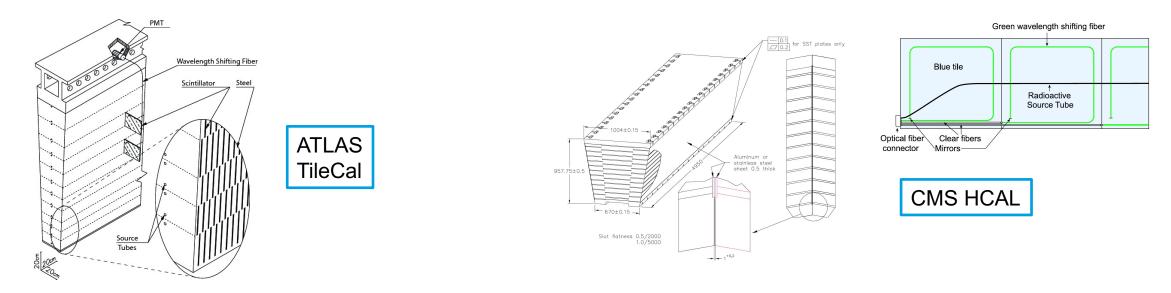
• Summary

Concepts

"Classical" scintillator tile calorimeters

Working horse for hadron calorimeters

Characteristics:

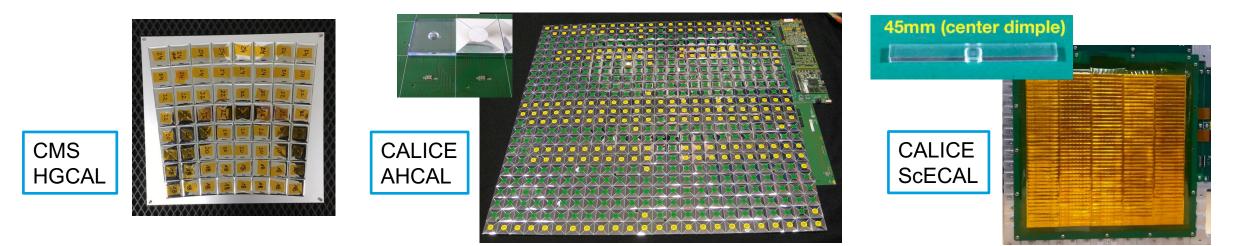

- Relatively large scintillator tiles (typically ~20*20 cm²)
- Photodetector and readout electronics outside of active volume
 - Light transport via WLS fibre
 - Grouping of tiles into readout channels

CMS HO tile

Examples:

- ATLAS TileCal: 500,000 plastic scintillator tiles, ~10,000 readout channels in Barrel + Extended Barrel
- CMS HCAL: 70,000 tiles (barrel) + 20,000 tiles (endcaps), 2592 readout channels each

"Integrated" scintillator tile and strip calorimeters


Scintillator calorimeters going high granularity

Characteristics

- Photodetector (SiPM) and frontend electronics integrated in active volume
- Small tiles and strips possible
- Individual readout of each tile (strip)

Examples

- Scintillator part of CMS HGCAL (endcap): 2.5*2.5 to 5.5*5.5 cm² tiles, ~240,000 tiles (= readout channels)
- CALICE AHCAL: 3*3 cm² tiles, ~24,000 tiles (prototype), ~8,000,000 tiles (ILC detector)
- CALICE ScECAL: 0.5*4.5 cm² strips, ~6,000 strips (prototype), ~10,000,000 strips (ILC detector)

Comparison of the two concepts

Pros and Cons

Classical

- Radiation hardness only determined by scintillator
- Photodetectors and electronics can be replaced
- Limited number of channels
 - + Relatively cheap
 - Customizable tile shape(s)
 - Coarse information on shower shapes
 - Very sensitive to single cell calibration
 - Pile-up rejection difficult
 - Not optimal for Particle Flow

Integrated

- Also photodetector and electronics in radiation area
- Only complete detector units can be replaced
- Large number of channels possible
 - More expensive (but still moderate cost)
 - Scalable production techniques needed
 - Detailed information on shower shapes
 - Only sensitive to global calibration shifts
 - Pile-up separation possible
 - Optimisation for Particle Flow Algorithms

State of the Art

How to quantify "state of the art"?

What is important? What really depends on the tile/strip calorimeter?

Energy resolution

- Single particle energy resolution depends on several factors
 - Sampling fraction & frequency
 - Scintillator and absorber material
 - For hadrons: interplay of ECAL and HCAL
 - At higher energies: total absorber thickness
 - Reconstruction algorithm (software weighting algorithms)
- For physics analysis: jet energy resolution usually more important than single hadron energy resolution
 - Reconstruction algorithm (Particle Flow Algorithms, Jet Clustering Algorithms)
 - At (HL-)LHC and FCChh: pile-up removal
 - Interplay of tracker, ECAL and HCAL
 - \rightarrow Comparisons are difficult

Time resolution: mostly covered in Nural's talk

Robustness

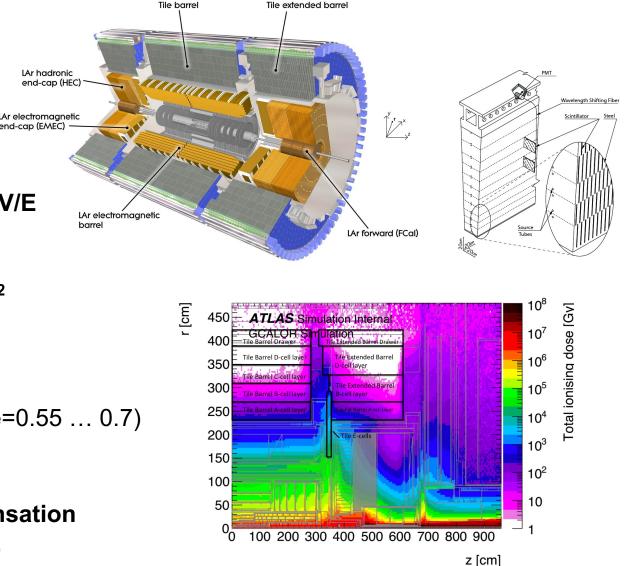
• in general hard to quantify, but **radiation hardness** is a clear criterion

Hadron energy performance still critical for particle flow

State of the Art: "Classical" tile calorimeters

Calorimeters at (HL-)LHC

ATLAS TileCal

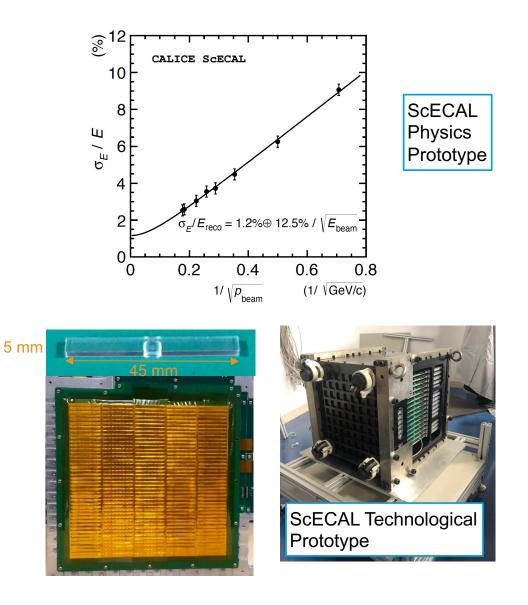

- Material composition: steel : plastic-tiles 4.7 : 1
- Thickness: >7.4 λ_{I} (>10 λ_{I} with ECAL)
- Single hadron energy resolution (testbeam)
 - TileCal stand-alone: ~56% $\sqrt{E} \oplus 5.5\%$
 - LAr-ECAL+ TileCal: ~52% √E ⊕ 3% ⊕ 1.6 GeV/E
- Maximum radiation (HL-LHC)
 - tiles: TID up to ~2 kGy, ~10% light loss
 - electronics: up to ~20 Gy, ~2 * 10^12 neq/cm²

For comparison: CMS PbWO₄ ECAL + tile HCAL

- Single hadron energy resolution (testbeam)
 - ~110%/ $\sqrt{E} \oplus 7\%$ (without weighting) (ECAL π /e=0.55 ... 0.7)

ZEUS HCAL

- Depleted Uranium absorber, optimised for compensation
- Single hadron energy resolution: 35%/ $\sqrt{E} \oplus 2\%$

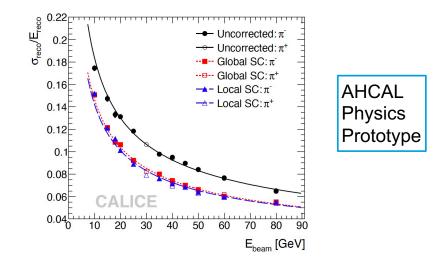

High granularity ECAL and HCAL

CALICE AHCAL and ScECAL

- Calorimeter concepts developed for linear e+e- colliders
 - Radiation hardness not very important
- High granularity, optimised for Particle Flow
 - Not optimised for single particle energy resolution
- Prototypes built and tested in beam tests
 - Performance determined with physics prototypes
 - Full integration in technological prototypes, expected performance similar or better

Scintillator ECAL (ScECAL)

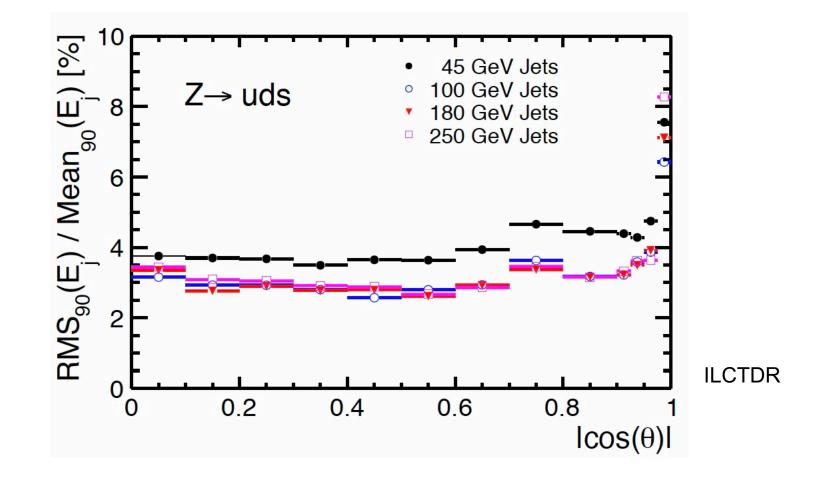
- Material composition: tungsten : scintillator 3.5 : 3 mm
- Thickness: 21.5 X0
- Electron energy resolution 12.5% $\sqrt{E \oplus 1.2\%}$
- Granularity: 45 * 5 mm² strips
 - Alternating orientation: effective 5*5 mm²
- # of channels: ~6,000 (prototype), ~10,000,000 (ILD)


High granularity ECAL and HCAL

CALICE AHCAL and ScECAL

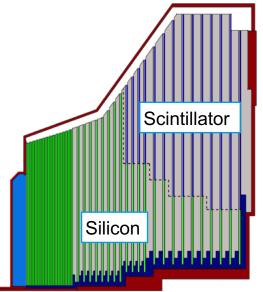
- Calorimeter concepts developed for linear e+e- colliders
 - Radiation hardness not very important
- High granularity, optimised for Particle Flow
 - Not optimised for single particle energy resolution
- Prototypes built and tested in beam tests
 - Performance determined with physics prototypes
 - Full integration in technological prototypes, expected performance similar or better

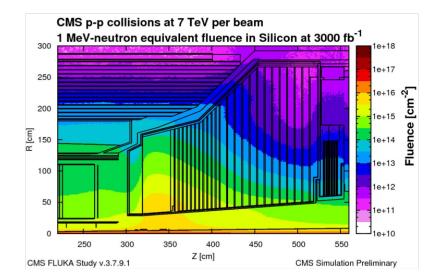
AHCAL


- Material composition: steel : scintillator 21 : 5 mm
- Thickness: 5.3 λ_I
- Single hadron energy resolution 58% $\sqrt{E} \oplus 1.6\%$
 - With software compensation 44% $\sqrt{E \oplus 1.8\%}$
- Granularity: 30 * 30 mm²
- # of channels: ~22,000 (prototype), ~8,000,000 (ILD)

Jet Energy Resolution: the power of granularity

• "Jet" Energy resolution from hemispheres in Z(')-> jet jet

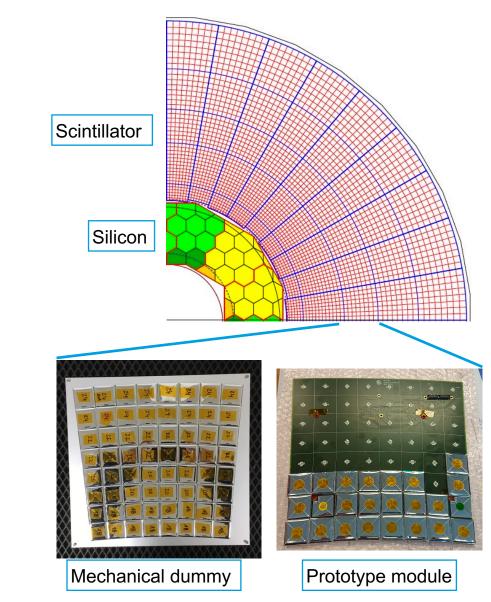



High granularity for HL-LHC

CMS HGCAL: scintillator part (for silicon \rightarrow Dave's and Vincent's talks)

- CMS calorimeter endcap upgrade for HL-LHC
- Scintillator tiles where radiation levels allow, otherwise silicon
- Design inspired by CALICE AHCAL
- Material composition: steel : scintillator = 3.5 (6.6) : 0.3 cm
- Thickness: 10.7 λ_{I} (total HCGAL)
- Maximum radiation
 - up to ~2 kGy
 - ~5 * 10^13 neq/cm²
- Granularity: 2.5 * 2.5 to 5.5 * 5.5 cm²
- # of channels: ~240,000
- Scintillator and silicon share the same (cold) volume
 - Operation at -30° C beneficial for SiPM noise
 - · Limited possibility to warm up for annealing

The first high granularity calorimeter in a collider experiment!



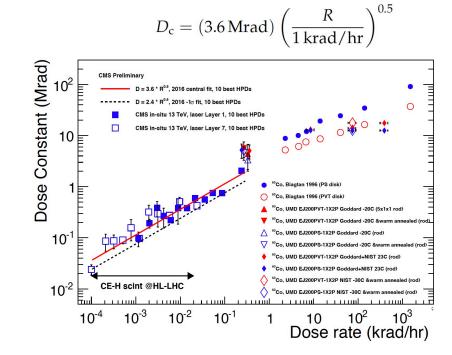
High granularity for HL-LHC

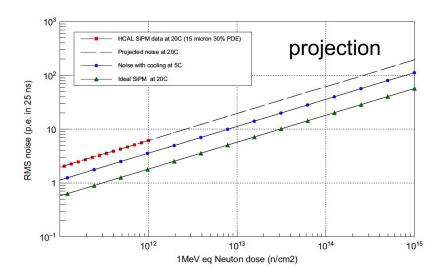
CMS HGCAL: scintillator part (for silicon see Vincent's talk)

- CMS calorimeter endcap upgrade for HL-LHC
- Scintillator tiles where radiation levels allow, otherwise silicon
- Design inspired by CALICE AHCAL
- Material composition: steel : scintillator = 3.5 (6.6) : 0.3 cm
- Thickness: 10.7 λ_{I} (total HCGAL)
- Maximum radiation
 - up to ~2 kGy
 - ~5 * 10^13 neq/cm²
- Granularity: 2.5 * 2.5 to 5.5 * 5.5 cm²
- # of channels: ~240,000
- Scintillator and silicon share the same (cold) volume
 - Operation at -30° C beneficial for SiPM noise
 - Limited possibility to warm up for annealing

The first high granularity calorimeter in a collider experiment!

Limitations: Radiation Hardness


Effects on active detector elements

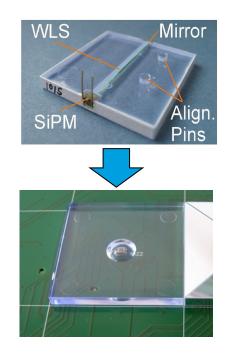

Radiation damage of plastic scintillator: TID

- Light loss depends not only on dose, but also on dose rate
- The lower the dose rate, the faster the damage!
 - Makes extrapolation from high-rate irradiations more difficult

Radiation damage of photodetector (SiPM): neutron fluence

- State of the art: CMS BTL plans use up to 3 * 10^14 neq/cm²
- Effects:
 - Breakdown voltage increases
 - Dark count rate increases
 - Lose ability to see single pixel spectra \rightarrow implications for calibration
 - Large leakage currents \rightarrow electronics needs to cope
 - At some point: significant fraction of pixels occupied by noise
 - Effect smaller at lower temperature
 - Effects can be mitigated by annealing (higher $T \rightarrow$ more annealing)
 - Effects of the package: optical transparency, self-heating

Limitations: Complexity and Integration


High granularity and Integration lead to new challenges

Large channel count \rightarrow large number of components (tiles, strips)

- Several mitigation strategies to reduce handling effort
 - Simplification: SiPMs directly coupled to tiles/strips (no WLS)
 - Automatization
 - Moulded (instead of machined) tiles/strips
 - (semi-)automatic wrapping in reflector foil
 - SMD components, assembly with pick-and-place machines
 - Larger units ("Megatiles")
 - not easy to reach good light yield and low channel-to-channel cross talk

Integrated electronics

- Couples electronics tightly to active elements
- No later upgrades possible
- Final electronics needs to be ready before production can start

Application in Future Experiments

Future TileCal: FCChh detector

Tile calorimeter for future hadron collider

FCChh detector reference design inspired by ATLAS

- HCAL barrel and extended barrel: TileCal
 - Inner radius at 2.85 m \rightarrow reduces radiation
- Radiation:
 - HCAL (extended) barrel: < 10 kGy, < 3*10^14 neq/cm²
 - Allows use of organic scintillator
- Add lead to improve energy resolution (constant term)
 - Fe: Pb : Sci = 3:3 : 1.3 : 1
- Readout with SiPMs
 - Finer granularity than ATLAS (factor 2 in ϕ), 300,000 channels
- Goal for single hadron energy resolution
 - Calorimeter system: ~50% $\sqrt{\mathsf{E} \oplus 3\%}$
 - Clustering needed for pile-up rejection \rightarrow significant degradation

Similar HCAL barrel also foreseen for LHeC or FCCeh detector

CC-hh simulation (Geant4)

0.2

 $\langle {\rm B}^{\rm Lac}_{\rm Lac} \rangle = 0.15$

a)

0.05

EMB+HB

 10^{2}

=0.36, topo-cluster 4-2-0, R<0.4

SiPM

Sourcetubes (

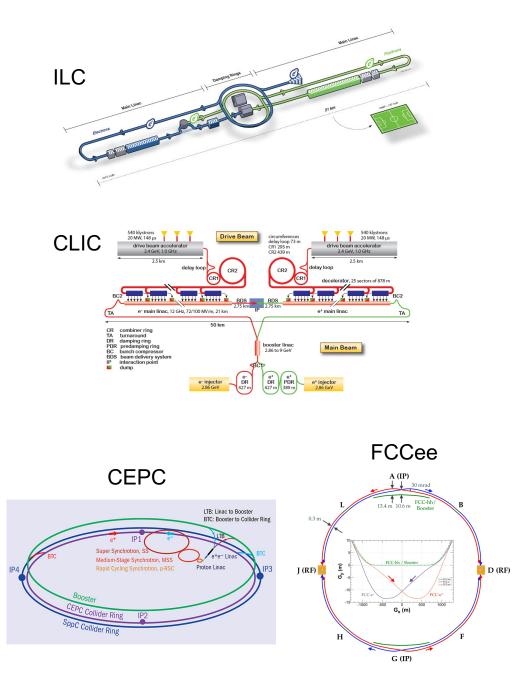
5cm

Wavelength Shifting Fiber (

Scintillato

Future Integrated Tile Calorimeters

Tile and strip calorimeters for future lepton colliders


Integrated scintillator tile (and strip) calorimeters foreseen for detectors at e+e- **Higgs factories**

- ILD and SiD at ILC
- CLICdet at CLIC
- CLD at FCCee
- Detector at CEPC

CALICE concepts developed for this environment, but

- Needs **engineering** for integration into collider detector
- For circular collider, adaptation of electronics, power and cooling for continuous operation necessary
- Scaling up from prototypes to collider detector by factor ~300 to ~1000 is a major effort

Similar HCAL is an option for a muon collider detector, but radiation might be an issue

DESY. Tile and Strip Calorimeters | ECFA R&D TF6 | Katja Krüger | 7 May 2021

Future Integrated Tile Calorimeters: DUNE Near Detector

E^m

0.3

0.2

0.1

0.2 0.4 0.6 0.8

Tile calorimeter for a future neutrino experiment

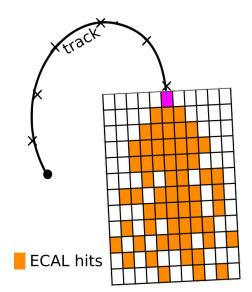
ND-GAr

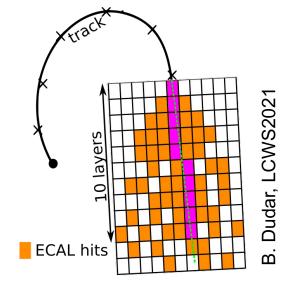
- Measure particles produced in neutrino interactions
 - typical energies of a few 100 MeV
- Gaseous Argon TPC surrounded by high performance calorimeter
- Requirements for the calorimeter:
 - Good energy resolution at very low energies
 - Identification of photons from NC events \rightarrow position/angular resolution
 - Neutron id and energy measurement (ToF) \rightarrow sub-ns time resolution
- Key designs
 - Very thin absorber: 2 mm Copper \rightarrow mechanical challenge
 - High granular layers based on CALICE AHCAL design
 - 5 mm plastic scintillator tiles of 2.5*2.5 cm²
 - Large strip layers in the back
 - Estimated number of channels: ~1 3M
 - Estimated performance
 - EM energy resolution $6\%/\sqrt{E} + 4\%$
 - Angular resolution $8^{\circ}/\sqrt{E} + 4^{\circ}$

29.29 / 11 0.06057 ± 0.001033 0.01567 ± 0.0005171

0.04565 ± 0.001444

Photon Energy [GeV]

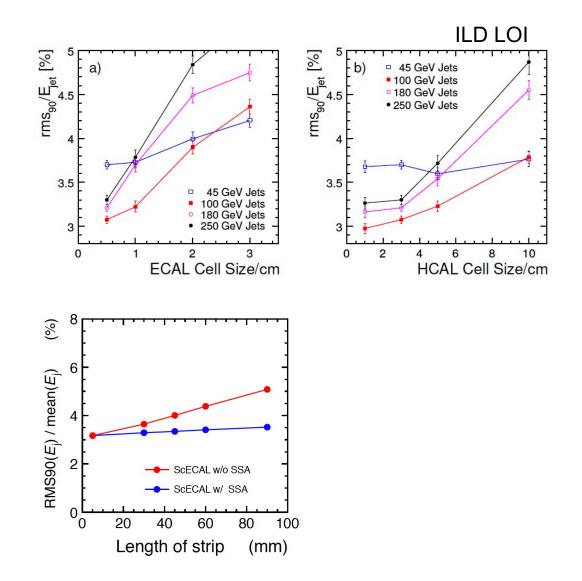

1.2


Future Ideas

Integration of Timing

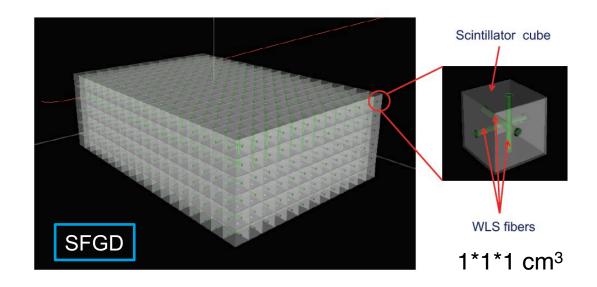
Towards 5d calorimeters

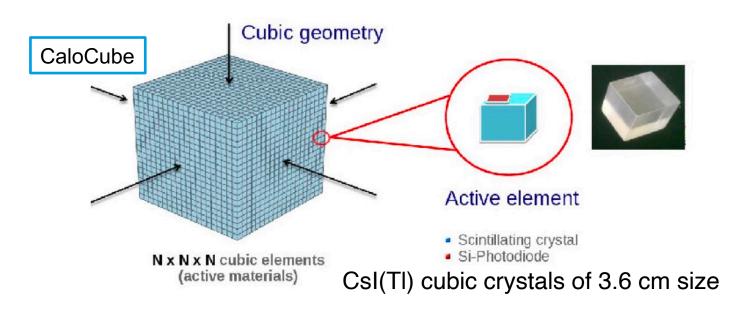
- Possible uses of timing
 - In the energy reconstruction (weighting, dual read-out)
 - For particle flow: watch showers propagate in time
 - For ToF particle ID (\rightarrow TF4, Roger Forty)
- Good timing needs large signal size
 - Can be reached by many cells contributing to a shower time
 - Much harder for MIPs, need high light yield
 - In general crystals better than plastic scintillator (CMS barrel MIP timing detector uses LYSO)
- For high granularity calorimeters in general there are (at least) two options:
 - All layers provide precise time measurement
 - Dedicated timing layers (how many, where?)
- Interplay not obvious, might depend on
 - What can be reached technically
 - What is affordable
 - How is the information used in the reconstruction
- Many interesting aspects to explore!

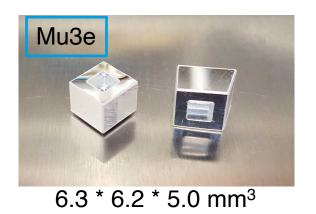


Ultimate Granularity

What makes sense?

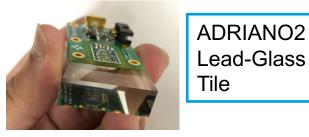

- Tile and Strip size in CALICE concepts given by jet and shower properties
 - ScECAL strip size allows virtual 0.5*0.5 cm² cells, optimised to reach jet energy resolution < 3.8%
 - AHCAL tile size corresponds to Moliere radius to resolve EM sub-showers, optimised for jet energy resolution
- What can be gained by going smaller?
 - Better pile-up rejection
 - Better 2-particle separation (especially for ECAL)
 - Smaller tiles result in higher light output for MIPs
 - Better S/N
 - Better time resolution

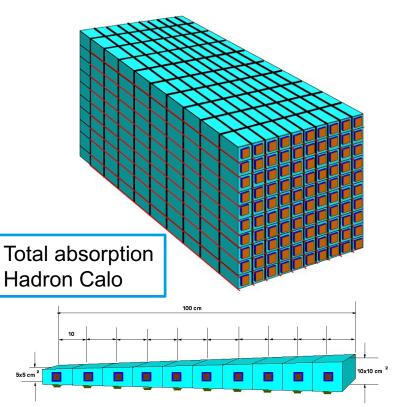



Ultimate Granularity

How far can we go?

- Some ideas are investigated already
 - CaloCube: EM calorimeter for satellite experiment with large angular acceptance
 - HyperK ND280 Super-Fine-Grained Detector: active target (and tracker) for neutrino interactions
 - Mu3e tile detector: time measurement with ~50 ps resolution for MIPs

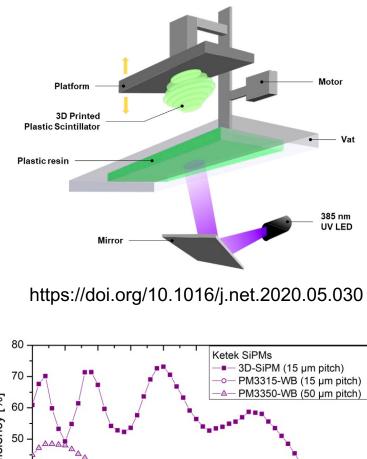


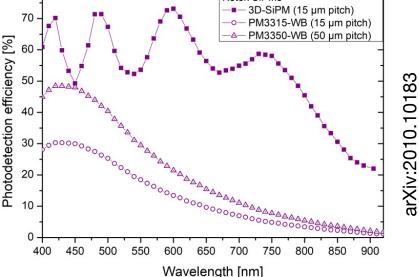


Tiles with Dual Readout

Combining advantages

- Fundamental limit of hadron calorimeters: fluctuations in shower composition
 - Electro-magnetic fraction
 - Hadronic fraction
 - Invisible fraction
- Compensating calorimeters are insensitive to fluctuations of EM fraction, but usually have degraded EM resolution
- Fluctuations in EM fraction can be measured
 - Indirectly by energy density (used in software compensation)
 - Directly with dual readout $(\rightarrow Gabriella's talk)$
- Combination of Dual Readout and High Granularity
 - Dual readout tiles (ADRIANO2 concept)
 - Total absorption dual readout hadron calorimeter \rightarrow removes also sampling fluctuations
 - Simulation promises stochastic term of 10-15 % (doi:10.1088/1742-6596/404/1/012049, doi:10.1088/1748-0221/6/10/P10012)
 - Requires high density materials producing scintillation light and Cerenkov radiation, and photon detection sensitive to either of the two
 - No experimental verification yet


Page 25


Connection to Industry

Possible areas of interest

Larger number of tiles/strips/channels calls for further automatization and/or simplification

- Can **3d printing** of tiles/strips make a difference?
 - Would give large freedom for special shapes and ondemand production
 - How scalable is it? How expensive is it?
- **SiPMs** are a dynamic field (\rightarrow TF 4)
- Ongoing developments towards more radiation hardness, less noise
- Applications in industry (e.g. automotive, medical)
 - We are not driving the field
 - But we might profit from developments
 - Example: SiPMs sensitive in other wave length ranges
 - Development of blue-sensitive SiPMs allowed to go from WLS fibres to direct coupling
 - New: (Infra-)Red sensitive 3D SiPMs \rightarrow higher PDE

Software

Nothing works without simulation and reconstruction

Simulation

- Plastic scintillator material properties in general well known (e.g. Birks' law)
- Combination with neutron-rich absorber material (tungsten) for hadron showers less well known
 - Detailed description increasingly important for high granularity calorimeters
- High granularity requirements lead to slow simulation
 - Some efforts ongoing to use Machine Learning

Reconstruction

- Advantages of high granularity can only fully be exploited with appropriate reconstruction algorithms
 - What is appropriate depends on the environment! (e.g. PFAs developed for e+e- not directly applicable at LHC and vice versa)
- Timing adds a whole new dimension to this!

- Calorimeters based on scintillator tiles and strips have been and are core components of detectors at colliders (and beyond)
 - "Classic" approach allows decoupling scintillator and photodetector + electronics
 - "Integrated" approach allows high granularity
 - CMS HGCAL will be the first application in a collider detector
- Potential of tile and strip calorimeters by far not exhausted
 - Concepts for future experiments: Higgs Factories, DUNE ND-GAr, FCChh
 - Ideas for future developments: timing, spectral sensitivity, novel materials...

Thank you!