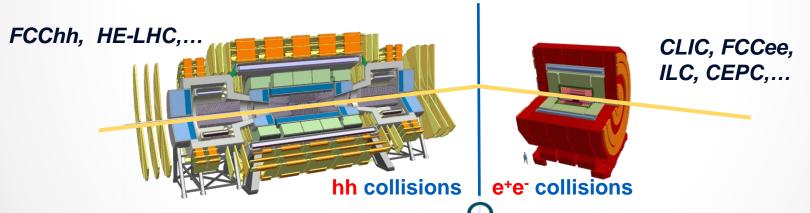


Cooling R&D needs for future detectors


ECFA-WG8, 31 March 2021

Bart Verlaat, CERN

What are the cooling need trends for future?

- Cooling demand input was given in the 2 input sessions
 - o https://indico.cern.ch/event/994685/
 - o https://indico.cern.ch/event/994687/
- Global tendency for future cooling needs:
 - <u>Lepton-Lepton, Lepton-Hadron and lon colliders</u> all seems to have in common a warm temperature domain and relatively low heat load densities.
 - Hadron-Hadron colliders, have the tendency for a colder cooling at increased power densities.
 - Other presented experiments did not show extreme cooling demands requiring special long term R&D, exceptions to this statement are:
 - Silicon Photomultiplier detectors are considered as technology in many detectors and require very cold temperatures
 - The AMBER detector is considering a cryogenic tracker with temperatures below 1.8K

High radiation dose (~ 100 MGy/10years)

· Very high integrated dissipated power

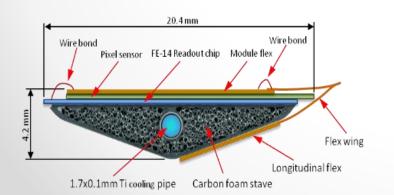
· Low temperature

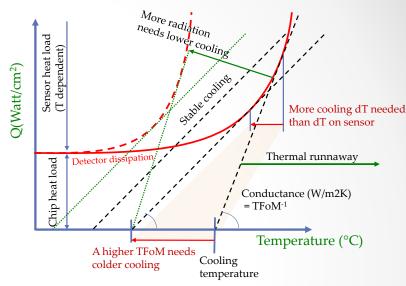
- Unprecedented spatial resolution (1-5 μm point resolution)
- Low dissipated power (<50mW/cm²)
- Room temperature
- Low material budget

31/03/2021

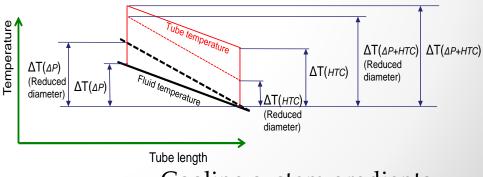
Cooling & Refrigeration versus Cryogenics

- There are many differences in the definition and application of cooling versus cryogenics. For the future we are approaching the intermediate space requiring long term R&D.
- Cryogenics is often declared as temperatures below 120K / -153°C being referenced to liquid Krypton at atmospheric pressures
- The "Standard" Cooling / Refrigeration domain is above -60°C. Limited choice of industrial applications are present for colder temperatures, without using cryogenic technologies.
- Another very important difference between refrigeration and cryogenics:
 - Refrigeration has the goal is to remove large heat numbers at medium low temperatures using pressurized gasses in piping systems
 - Cryogenics has the goal to make very cold temperatures at reduced heat numbers often around atmospheric pressure systems in pool boiling cryostats.
- The widely used CO₂ cooling for detectors has an application range of 20°C / -40°C
- For future detector cooling we need to explore the unknown intermediate space (-150°C /-40°C) approaching cryogenic temperatures with relative large heat loads to cool.
 - With 1 very challenging application: The AMBER experiment, <1.8 K with 10Watt dissipation!


Fluid	Boiling point (K/°C)
Helium-3	3.19 / -269.96
Helium-4	4.214 / -268.936
Hydrogen	20.27 / -252.88
Neon	27.09 / -246.06
Nitrogen	77.09 / -196.06
Air	78.8 / -194.35
Fluorine	85.24 / -187.91
Argon	87.24 / -185.91
Oxygen	90.18 / -182.97
Methane	111.7 / -161.45
Krypton	119.75 / -153.4

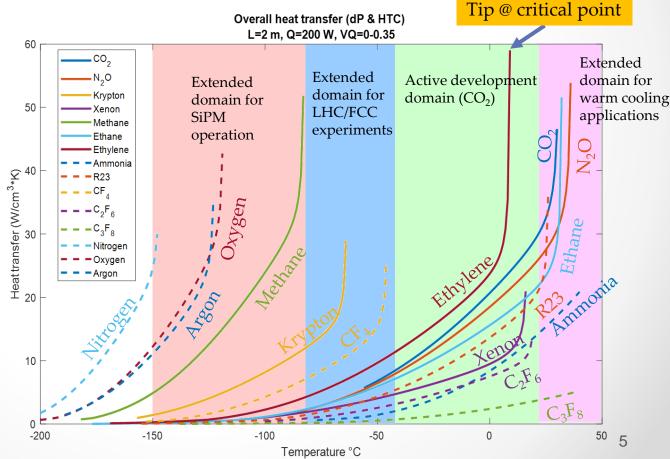

Detector cooling explained

- To keep the detectors cold and away from thermal runaway, 2 things are important:
 - The cooling fluid low temperature
 - The Thermal Figure of Merit (cm^{2*}K/W),
 - TFoM = The thermal resistance from source to sink (sensor to cooling)
 - TFoM: A thermal resistance chain including: material conductance, interface resistance, fluid heat transfer coefficient and pressure drop (2-phase systems) or caloric heating (Single phase systems)


B. Verlaat

- As the gradients are heat load depended a higher TFoM requires a colder fluid temperature. The relation is non-linear (An accelerating cold temperature is needed at a worse TFoM)
- The selection of the TFoM and hence cooling temperature is a mass saving optimization

TFoM and cooling temperature



EP-DT Detector Technologies

Cooling fluid choices

- A good method to compare different fluids at different operational temperatures is to plot the optimal pipe volume per achieved conductance (Volumetric heat transfer in W/cm³K).
- The volumetric heat transfer takes the losses by pressure drop and convective heat transfer into account
- This approach shows that the closer you are to the critical point, the better the performance
- High heat load density cooling (>0.3 W/cm²)
 - A fluid with a high volumetric heat transfer is needed to maintain a low contribution to the TFoM.
 - Preferred choice is 2phase evaporative cooling, with relative high pressure
- Low heat load density cooling (<0.3 W/cm²)
 - Volumetric heat transfer less of an issue, more fluids can be considered for practical reasons
 - Single phase and air cooling can be considered

31/03/2021

Overall heat transfer (dP & HTC)

L=2 m, Q=200 W, T=-40 °C, VQ=0-0.35

Tube diameter (mm)

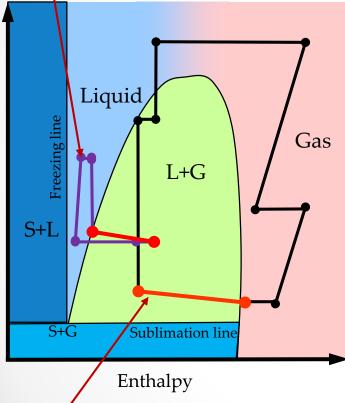
Xenon (15.5 bar)

N₂O (9.4 bar)

- Ammonia (0.7 bar)

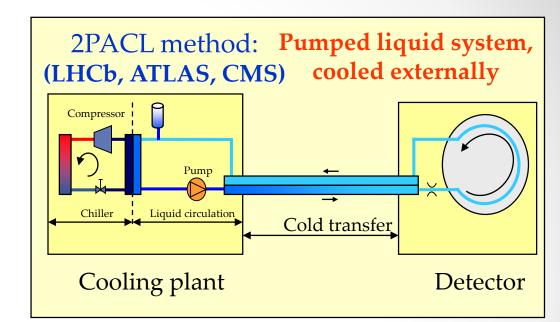
Ethylene (14.5 bar)

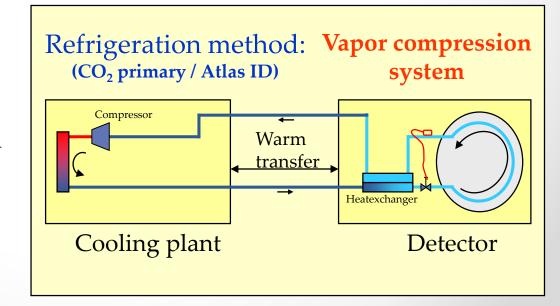
10


Heat transfer (W/cm3*K)

System Cycles

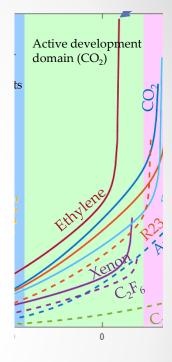
2PACL cycle


Pressure


- Good heat transfer due to low vapor quality
- Limited cold use due to liquid freezing (>-40°C)
- Cold transfer lines

Vapor compression cycle

- Reduced heat transfer due to high vapor quality
- Can run colder than 2PACL (-53°C)
- Can have warm transfer lines (Integration benefit)



Currently active cooling domain $(-40^{\circ}C / +20^{\circ}C)$

- In this temperature domain the leading choice is evaporative CO₂ cooling using the 2PACL cycle technology
- Well known technology, still R&D needed in specific domains
 - Larger heat flux domains (>1W/cm² sensor flux)
 - By use in complex evaporator geometries like micro-channels or 3D print heatsinks.
 - Warm cooling behaviour for services cooling
- Alternative fluid candidates are single phase Novec or water $(+^{\circ}C)$
- Fluorocarbons (single or 2-phase are not being considered for future use due to their bad environmental properties and their potential ban by future regulations)
- CO₂ is used at CERN in the following applications:

AMS@ISS 2011-

LHCb-Velo 2008-2018

ATLAS-IBL 2014-

CMS-Pixel 2015-

Traci 2011-2015

Lucasz 2016-

2019-

LHCb-Mauve ATLAS & CMS Ph2 **Upgrade** (2025)

CERN official environment Report

«CERN's emissions are equal to a large cruise liner»

https://physicsworld.com/a/cerns-emissions-equal-to-a-large-cruise-liner-says-report/

«Greenhouse gas emissions at CERN arise from the operation of the Laboratory's research facilities. The majority of emissions come from CERN's core experiments and more than 78% are **fluorinated gases**. With climate change a growing concern, the

GROUP	GASES	tCO₂e 2017	tCO₂e 2018
PFC	CF ₄ , C ₂ F ₆ , C ₃ F ₈ , C ₄ F ₁₀ , C ₆ F ₁₄	61 984	69 611
HFC	CHF $_3$ (HFC-23), $C_2H_2F_4$ (HFC-134a), HFC-404a, HFC-407c, HFC-410a, HFC R-422D, HFC-507	106 812	96 624
	SF ₆	10 192	13 087
	CO ₂	14 612	12 778
TOTAL SCOPE 1		193 600	192 100

Organization is committed to reducing its direct greenhouse gas emissions.» https://hse.cern/environment-report-2017-2018/emissions

CERN management accepted and financed an objective to reduce CERN's direct greenhouse gas emissions by 28% by the end of 2024. Among the actions being taken to achieve this, CERN has for several years been developing environmentally-friendly cooling systems that have potential for applications in other domains."

Cooling fluids used at CERN (with room temperature reference)

	Normal boiling conditions Phase Proper conditions C C C C C C C C C C C C C C C C C C C		Critical point		Properties at normal conditions T=20 °C, P=1atm or normal boiling pressure in case of liquefied gas			Other properties		
Fluid	Boiling temperat ure (°C)	Boiling pressure (bar)	Latent heat (kJ/kg)	Critical temperat ure (°C)	Critical pressure (bar)	Density (kg/m3)	Heat capacity (kJ/kg*K)	Viscosity (μPa*s)	GWP	Prize €/kg
Water	100	0.023	2453	373.9	220.6	998	4.18	1001.6	-	0
Novec 649 ¹	49.1	0.326	96.2	168.7	18.7	1617	1.10	756.6	1	47,-
C6F14	56.9	0.236	94.0	175.9	18.3	1703	1.03		9300	30,-
C5F12	29.8	0.695	95.0	147.4	20.5	1632	1.07	497.6	9160	
C4F10	-2.2	2.29	88.9	113.2	23.2	1516	1.07	230.9	9200	138,-
C3F8	-36.8	7.56	79.1	71.9	26.4	1352	1.15	180.6	8900	38,-
C2F6	-78.1	Super cr	itical	19.88	30.5	Super cr	ritical		11100	100,-
CO2	-78.4	57.29	152.0	30.97	73.8	773.4	4.3	66.1	1	0.015

¹Not well understood radiation and material compatibly issues

EP-DT Extended domain for Hadron collider experiments (-80°C / -40°C)

- Future detectors with increased radiation doses require colder cooling beyond the current CO₂ capacities (<-40°C)
- There are not many existing technologies in this temperature domain
- Serious R&D is needed in this temperature domain exploring new technologies
- Candidate fluids and cycle technologies:
 - Krypton (evaporative and super critical),
 - A new cycle technology is needed as cooldown from ambient starts in the gas phase
 - Trans-critical cooldown needed to avoid thermal shocks
 - Carbon Tetrafluoride (CF4)
 - The only fluorocarbon candidate which could be considered due to the limited choice of candidates in the high temperature area of this domain
 - Same cycle challenges as Krypton
 - \circ N₂O/CO₂ mixtures (100% CO₂ > -55°C / 100% N₂O @ -90°C)
 - N₂O has nearly the same properties as CO₂, but a much lower freezing temperature.
 Can be used as a mix with CO₂ acting as an anti-freeze or pure if ultra low temperatures are needed (>-90°C)
 - Due to the lower efficiency at cold temperatures, N₂O/CO₂ mixtures are best to be considered for low heat flux applications like SiPM cooling.

 Ethane or Ethylene would be good thermal candidates, but not preferred because of their flammable properties.

- Currently VELO-3 is seriously looking into this temperature domain
- Future high radiation experiments (eg. FCC) are expected to need colder cooling than the current CO₂ range

-50 Temperature °C Slow cooldown В 2-phase Gas (Evaporation) C Thermal shock Krypton cycle start Operational 2-phase range 10 Isothermal line

Enthalov

Extended

domain for

LHC/FCC experiments

de

31/03/2021

B. Verlaat

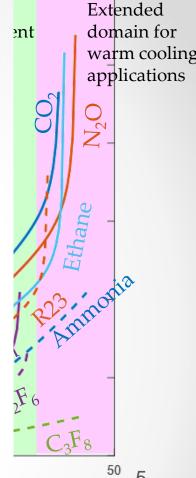
Pressure

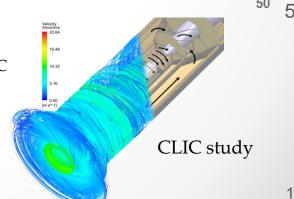
CO₂ cycle start

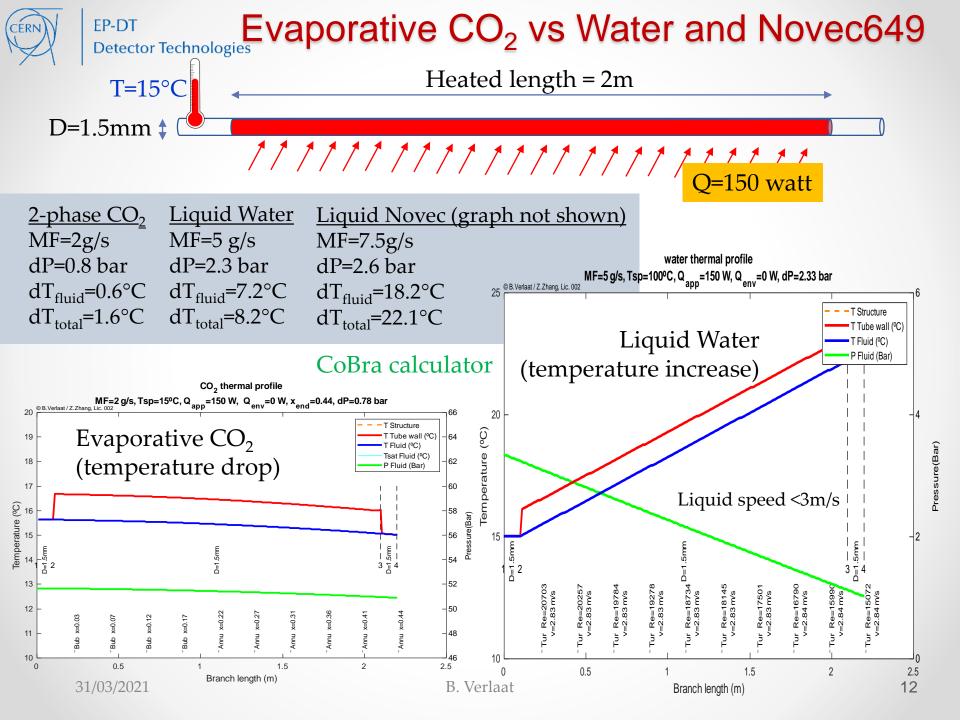
Liquid

EP-DT Detector Technologies

Warm cooling domain (Room temperature and above)


- Lepton and lon collider experiments require ultra light detectors which can be cooled at room temperature.
- Candidate technologies:
 - Direct air cooling using an air draft through the detector,
 - Special designed layout to facilitate convective air flow
 - Considered for Alice upgrade
 - Water or Novec cooling (Novec if dielectric fluids are needed)
 - Low pressure solution for ultra thin plastic piping
 - Warm evaporative or super critical CO₂
 - In case very small cooling channels are needed (eg. micro channels)
 - Good solution for services cooling like cables and DAQ boxes in the detector vicinity




Air-cooling example PXL/STAR HFT @ RHIC 0.17 W/cm², dT=13°C, Wind speed: 10.1 m/s (Windforce 5 Beaufort)

Thermal figure of merit: 70 K*cm²/W

PXL/STAR

Supercritical cooling, a special monophase cooling case

- The super critical region is a mono-phase region with very favourable properties for heat and mass transfer
 - Very high heat capacity, Cp=J/kg*K
 - Very low viscosity, μ=Pa*s
- High heat transfer capability
- SC-CO₂ is interesting to explore for warm cooling applications (31°C / 45°C)
- For cold temperature applications the use of super critical Krypton cooling (SC-Kr) can be considered (-63°C / -50°C)

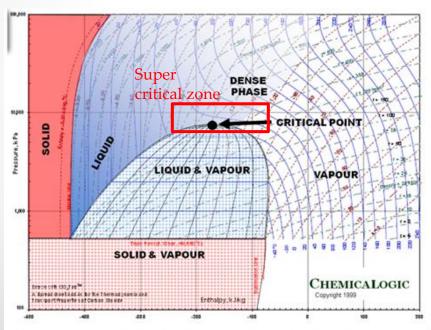
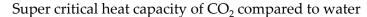
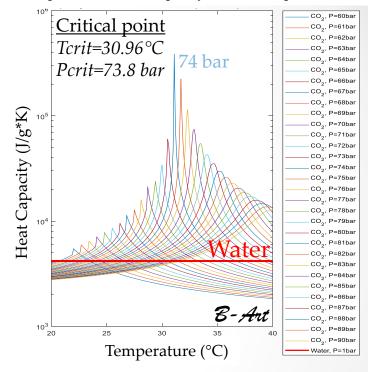
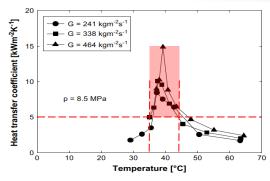
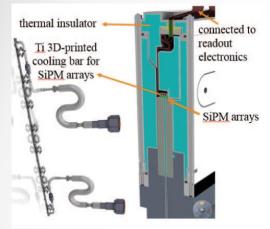
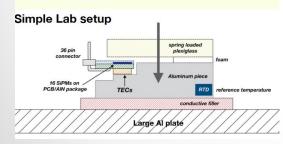




Figure 1. Pressure-enthalpy diagram for carbon dioxide identifying different phases


Fig. 3 – Heat transfer coefficient versus bulk temperature for different mass fluxes by Yoon et al. (2003).

Silicon Photomultipliers (SiPM)

BTL 16 ch SiPM array

CMS SiPM with TEC cooling

- Many future detectors are considering SiPM detectors.
 - Current : LHCb-SciFi, CMS-EC upgrade
 - Future : Calorimeters, scintillator trackers
- Cooling temperature depends on noise allowance and radiation level
- Temperatures in the range of -50°C to -150°C are being considered
- SiPM have a low heat dissipations
- Main contribution for cooling system is heat leak due to the difficulty to make good insulation (Direct mounting on scintillator material)
- The wish for cryogenic temperatures have a large challenge as the detectors are not suitable to fit in standard cryostats.
- Cooling method candidates:
 - Integrated Thermal Electric Cooler (TEC or Peltier) with CO₂ or Novec cooling
 - CO₂/N₂O mixtures in a vapor compression cycle potentially with warm in and outlet lines (ATLAS ID cooling concept)
 - Krypton based cooling like slide 10
- R&D involves:
 - Cooling fluid use
 - Cooling cycle
 - Insulation / mechanical structure design concept

Cryogenic detectors

- The central tracker of AMBER has very challenging cryogenic requirements.
 - It needs to be cooled below 1.8K with significant heat loads.
 - 10 Watt in a Ø500mm*630mm volume
 - Comparison: LHC magnet is 0.13 Watt
 - According cryo-experts this is unprecedented
 - Very serious R&D is needed to cool in this temperature and heat load domain
- Nobel liquid detectors with embedded electronics
 - Calorimeters (See Martin Aleksa talk)
 - Neutrino experiments
 - Needs better understanding or this is challenging cryogenic technologies

The target can be adapted to include a recoil proton detector

LHC magnet loads

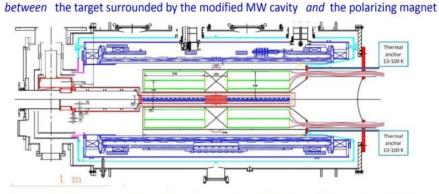
Component		Average heat loads (Watts)					
	300 K to 50/75 K	50/75 K to 4.5/20 K	4.5/20 K to 1.9 K				
Cryostat							
Thermal shield	43.7						
Radiation screen		1.57					
Cold-mass			0.058				
Support System	17.3	2.58	0.069				
Total Cryostat	61.0	4.15	0.127				

MW cavity r = 90mm

1st inner SI det r = 150 mm (thickness=300µm)

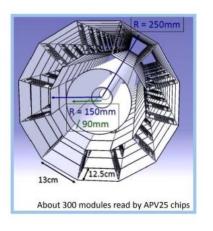
2nd outer SI det r = 250 mm (thickness=1000µm)

About 300 modules read by APV25 chips


Si strip pitch size for optimum position resolution about 1.3cm (inner) and 2.2cm (outer) (for $\Delta \phi = 5^{\circ}$) \times 1 cm (for $\Delta z = 3$ mm)

resolution improved by about a factor 3 compared to the present CAMERA

→ less than 10 000 channels


Thermal load

very first estimate ~ 10 Watts

An important Issue: operation of SI and evacuation of the heat of the read out electronics

A second design: SI detectors in a separate block warmed at ~70K and "warm" chips fixed on the flange at the room temp (use of 1.25m long flat aluminium-polyimide multilayer flexible buses)

- For future detector cooling the following R&D areas have been localized:
 - High heat density cooling in the temperature domain below CO₂ (-40°C / -80°C)
 - Super and sub critical Krypton cooling using a trans critical cool down cycle
 - CF₄ is a non-green back-up solution
 - Low heat density cooling in the temperature domain below CO₂ (-40°C / -80°C)
 - CO₂/N₂O mixtures (or pure N₂O) in an oil free vapor compression cycle (With warm transfer lines) or 2PACL cycle
 - High heat density warm cooling applications (15°C / 35°C)
 - Super and sub critical CO₂ cooling
 - Low heat density warm cooling applications (15°C / 35°C)
 - Super and sub critical CO₂ cooling
 - Water and Novec single phase cooling
 - · Direct air cooling solutions
- A special attention to the following specific detectors is needed
 - SiPM cooling including thermal housing design (-40°C / -150°C), using technologies mentioned above
 - Cryogenic AMBER tracker using very low temperatures with relative large heat dissipation