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 Inspection, operation and maintenance of radioactive particle accelerators 

devices towards maintainability and availability increase

 Experimental areas and objects not built to be remote handled/inspected
 Any intervention may lead to “surprises”

 Risk of contamination

The LHC tunnel
North Area experimental zone

Radioactive sample handled by a robot

Main needs for robotics at CERN
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Need for maintenance intervention and inspection in harsh and semi-

structured environments

Radiation, magnetic disturbances, delicate equipment not designed for 

robots, big distances, communication, time for the intervention, highly skilled 

technicians required (non robotic operators), etc.

Main difficulties for robotics at CERN



Overview of the Robotics Service at CERN

Contents



 The Robotic Service at CERN



6



Overview of the Robotics Service at CERN

Robotic Support for CERN: Type of Robots Overview

7

Telemax robot

Teodor robot EXTRM robot (CERN made)

Train Inspection Monorail [10] (CERN made)

CERNBot [11-17] in different configurations  (CERN made)



Overview of the Robotics Service at CERN 8

Telemax robot

Teodor robot EXTRM robot (CERN made)

Train Inspection Monorail (CERN made)

CERNBot in different configurations  (CERN made)

Mechatronics conceptions, designs, proof of concepts, 

prototyping, series productions, operations, 

maintenance, tools and procedures

More than 20 robots in operation

autonomous inspections

 teleoperations

assisted telemanipulation

autonomous remote operation

 safety, search and rescue

Robotic Support for CERN: Type of Robots Overview
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Mechatronic System

Motion

Perception

Actuation

 New robot and robotic control developed [9-39]

 Human robot interface

 New user-friendly bilateral tele-manipulation system

 Haptic feedback

 Assisted teleoperation

 Artificial intelligence [30-31-38-40]

 Perception and autonomy

 Deep learning

 Operator and robot training system [41]

 Virtual and augmented reality

 Learning by demonstration

CERNTAURO framework [7]
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Robotic preventive maintenance and inspection

SPS MKP oilers refill Remote radioprotection surveys Cabling status inspection

Temperature sensor installation on 

AD target

Tunnel structure monitoring Remote Vacuum Leak detection
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Procedures and Tools
 Several tools and sensors integrated for various tasks, also in emergency

 Intervention procedures, recovery scenarios, tools and mock-ups are as important as the 

robot/device that does the remote intervention
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Nr. of Interventions in 2020 Nr. of tasks 

performed

Robot operation time in harsh 

environment [h]

Dose Saved 

[mSv] *

Dose Taken by robots [mSv]

18 ~300 ~ 350 ~ 690 ~7000

* Calculated on estimated human intervention time

Robotic Interventions

Continuing developing best practice for equipment design and robotic intervention 

procedures and tools including recovery scenarios

Remote maintenance test facility (b927)
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Robotic Support at CERN

Started to apply 

CERN custom 

made robotic 

solutions.

Remote handling  

capabilities and 

modularity 

strongly 

increased!
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Importance of the design phase, procedures and tools
 Designing machines that can be maintained by robots using appropriate and easily accessible

interfaces will increase maintainability and decrease human exposure to hazards

Easier remote or hands-on manipulation 

than chain-type connection
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Custom made VERO framework: Virtual Environment for intelligent Robotic Operations

Laser scanning 2D plansphotogrammetry

INPUT DATA

CAD models (stp, 

VOLT or 

SMARTEAM)

Studies Implementation

New equipment design Anti-collision and Virtual 
fixtures

Operator training 
in VR.

Force feedbacks

Assistance 
for real 

operationsWhole scenario simulation

Sketches

Virtual Reality 

mockup

Adaptable 

to different 

game 

engines!
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 Simulation of robotic interventions

 Integration of robots in the environment and choice of robots

 Intervention procedures

 Tools design and test

 Machines risk assessment

 Robots training by demonstration

 Operators training and teleoperations

 Risk analysis

 Recovery procedures

 Simulation of human intervention 

 Human intervention procedures

 Live radiation levels and cumulated dose while training in VR 

(Augmented reality in virtual reality)

 Intervention training

 Risk analysis

 Feedbacks for future remote-handling-friendly machines

Current use of Enhanced Reality in BE-CEM
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Main Robotics Interventions in 2020
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Main Robots integrated/controlled within facilities at CERN

CERNbot

TIM (x5) Kuka Robots (x3)

CHARMbot
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Novel SPS robot designed, produced and installed during LS2
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Challenging Teleoperation Example#1
 Water leak inspection and fix in 

extremely radioactive area

 Access particularly difficult

 1 km inside 1st beamline 

access

 Teleoperated from human safe 

area

 CERNbot for teleoperation and 

EXTRM for support

 10 hours of operation

 CERNTAURO modularity allowed 

quick robot reconfiguration, 

sensors and tools integration to 

environmental changes
4
0
0
 m

m
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Challenging Teleoperation Example#1
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 Radioactive source handling at 2.5 m height using CERNbot 2 

 Intervention not possible to be performed by humans

 Bimanual operation, novel procedures and tooling

 CERNTAURO RH procedures and recovery scenarios allowed intervention acceptance by big 

science facility management

 CERNTAURO bilateral master-slave control allowed precise telemanipulation of delicate objects

Challenging Teleoperation Example#2
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Challenging Teleoperation Example#3

Dismantling of n_ToF target
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User-friendly teleoperation system

25

Novel Master device equipped with haptic devices to increase operators proprioception

Autonomous operation based on learning by demonstration technology

Integration and commissioning of Machine Learning technologies for operator awareness and 

autonomy improvements
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Robots for Future Accelerators (FCC)

26

Novel robotics platforms and controls for remote maintenance and interventions
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Conclusions
 Particle accelerators devices are normally installed for many years and tasks of dismantling radioactive 

objects is inherited by the future generation of physicists/technicians/engineers

 Maintenance and dismantling tasks, over a lifetime of a particle accelerator device, must be taken into 

account at design phase

 Robotic intelligent and robust systems can increase personnel safety and machine availability in 

performing such tasks 

 Ready-to-use industrial solutions do not exist for user friendly remote maintenance and inspection

 We gained an important knowledge and experience in designing, producing and applying robots in harsh 

and hazardous environment

 External collaboration with Robotics Research Centres and Universities is crucial to take advantage of 

the cutting edge technology 
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Robotics technologies are mainly used at CERN for:

 Human intervention procedures preparation

 Environmental measurements, maintenance and 

inspection in radioactive areas

 Quality assurance

 Post-mortem analysis/inspection of radioactive devices

 Reconnaissance

 Search and rescue

 And others…
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 Industrial solutions do not cover all CERN needs 

for remote maintenance and quality control

 Strong need to develop a modular and 

adaptable robotic framework/system for 

unstructured and harsh environments

 Necessity of having the human, the machine and 

the interface working together adopting user 

friendly interfaces

 Increase of proprioception reducing 

operators stress 

Main Motivations for Custom Robotic Development


