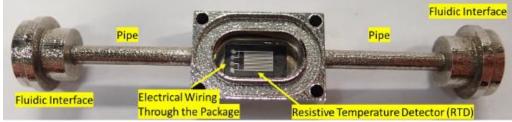
Monitoring I Environmental

Georg Viehhauser

Disclaimer

- I am not an expert on this
- My experiences are biased towards ATLAS & trackers
- I am definitely not qualified to talk about cryogenics, don't consider this `environment' (although there will be contact points)
- But will include aspects of thermal management (cooling)
- Thanks for input: Martin Aleksa, Corrado Gargiulo, Greg Hallewell, Eric Hennes, Paolo Petagna, Armin Reichold and others


Introduction

- Purpose of environment monitoring
 - Make sure that environment is suitable so that nothing gets damaged
 - Normally this means turning something off
 - (Ideally) not physics-relevant
 - Detector safety relevant \rightarrow should be primitive, simple, direct
 - Nothing for a meeting like this
- But that's not all other use cases
 - 1. Debugging
 - For complex systems to understand the functioning of individual elements, catch failures early, optimize performance
 - This only is useful if you have some means of control, where you can respond (correct) based on the information
 - 2. Use in R&D (lab or testbeam) and production and integration QA&QC
 - Usually not radiation hard, smaller overhead (readout etc.)
 - In both cases: more data, higher precision, higher segmentation, possibly higher sampling rate, often with complementary measurements
- Start with discussion of applications, then technologies, then summarize

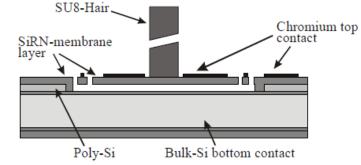
The simple ones I

• Temperature

- Basic technology is trivial (RTDs)
- Opportunities for integration
 - Sensors embedded in 3D printed metal (tubes, tanks, feedthroughs, HEXs)
 - Sensors embedded in CF
- High-end T measurements: 0.1 °C precision (FOS)
 - Crystal calorimetry? Liquid TPCs?

C. Manoli et al., Smart Wall Pipes and ducts (SWaP), Attract

- Pressure
 - Opportunity for integration: integrate piezo-electric sensor into 3D printed tube or other vessel
 - Current pressure sensors typically piezo with associated electronics limited radiation hardness
 - Technology opportunity: MEMS
- Magnetic field
 - Currently:
 - ATLAS and CMS field mapped using Hall probes + fit to Maxwell equations. General precision of measurements is 0.07%
 - Monitoring by 2 or 4 NMRs
 - Technology opportunity: Electromagnetically Induced Transparency (EIT) in Rb vapour: pT resolution
 - This is an optical measurement, so could be made rad-hard, could be used for monitoring as well
 - Another opportunity in the location guidance of the magnetometers during mapping: triangulate position of sensor using accurate distance measurement system (FSI)

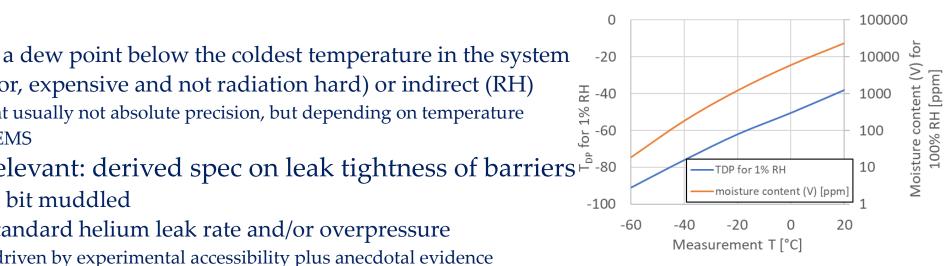

M Aleksa et al 2008 J. Phys.: Conf. Ser.110 092018

V. I. Klyukhin et al. 10.1109/TASC.2008.921242

The simple ones II

• Flow

- Gas/liquid flow meters are standard, mostly volumetric, for mass: Coriolis flowmeters
 - Technology: sonar
- 2-phase
 - No technology currently available, commercial Coriolis massflow meters do not work
 - Not needed for total flow measurements, but possibly useful for monitoring of flow in parallel evaporators
- Closed vs open systems
 - Open air flow cooling systems: issue is control of flow (do I get enough heat capacity where I need it?)
 - Technology opportunity: Local gas flow measurement: MEMS with vanes or sense hairs? (could also have spin-out possibilities)
- Gas composition
 - Identify contamination/leaks
 - Mixture monitoring (cooling mixtures, gaseous detectors?)
 - Technology: Sonar
- Vapour quality
 - For evaporative cooling systems: Useful to understand boiling (flow regimes, retarded boiling) in evaporators?
 - Currently no technology available (only optical in transparent tubes)
 - Possibly by capacitive measurement?



GJM Krijnen et al., MEMS based hair flow-sensors as model systems for acoustic perception studies, doi: 10.1088/0957-4484/17/4/013

Positions and deformations

- We have the very best radiation-hard position detectors in the world
 - Position of the sense elements found by track based alignment (TBA)
 - Works at smallest required precision (~ μm)
- What else do we need?
 - 1. TBA does rely on stability (over ~ 1d on largest scale, weeks months on smallest scale)
 - Usually not a problem (loads are low) in closed system (trackers) more of an issue in open systems (muon spectrometer)
 - What could be useful?
 - Identification of seismic events shock sensor
 - If there is a higher thermal or mechanical load (for example high-flow gas cooling) track movements (technologies: FSI triangular grid, RASNIK – sagitta displacement)
 - 2. TBA gives arbitrary output for some global deformation DOFs (`weak modes' telescoping, twists, etc.)
 - Standard method is to constrain using low-level physics (reconstruct known mass peaks)
 - Could be easily constrained by a few (tens) of distance measurements
 - Could be useful (technology: FSI), but requires change of mentality of our software colleagues
 - 3. Vibration spectrum information is useful information for design/optimization of support structures
 - Problem: when you get the data it's too late... But it is useful for R&D
 - Technology: MEMS
 - 4. Structural health
 - Measure strain, either directly in or on the object, or from remote optically
 - Technology: Embedded: Strain gauges, FOS, or remote: FSI

Humidity

Condensation control:

- Starting point is clear: a dew point below the coldest temperature in the system ٠
- Direct (reflecting mirror, expensive and not radiation hard) or indirect (RH) •
 - Indirect measurement usually not absolute precision, but depending on temperature ٠
 - Technology: FOS, MEMS
- For design and build relevant: derived spec on leak tightness of barriers $\overset{a}{\vdash}$ -80
 - Here, things become a bit muddled
 - Usually specified as standard helium leak rate and/or overpressure
 - This specification is driven by experimental accessibility plus anecdotal evidence
 - Relation to dew point (or equivalently, moisture content) is not clear (does depend on the shape/aspect ratio of the leak)
 - The actual relevant property is a backdiffusion rate of moisture in relation to dry gas flow into ٠ detector volume
 - This is difficult to measure: Put barrier between one high T_{DP} and one low T_{DP} environment and measure moisture • content in both volumes over time
 - Problem is that required moisture diffusion rate is usually for low temperature, and tiny at room temperature not • accessible by warm RH measurement
 - $T_{DP} = -60 \text{ °C}: 10.6 \text{ ppm}_{V} \text{ H}_{2}\text{O}$, with $\Delta R_{V} / \Delta T_{DP} = 2.5 \text{ ppm}_{V} \text{ H}_{2}\text{O}/\text{°C}$, but 1%RH @ 15°C is 170 ppm_V H₂O
 - Need to do cold measurement (which can be difficult), but cheap precise ultra-low humidity measurement would • help
 - Or we find an affordable way to directly measure low moisture content/dew point

Fibre-optical sensors (FOS)

- Fibre-Bragg Grating (FBG): G. Berruti et al. <u>https://doi.org/10.1016/j.snb.2012.10.047</u>
 - Modulation of core refractive index, measure strain of core,
 - Humidity measurement from strain introduced by coating (polyimide) absorbing moisture
 - $S_{RH} = 2.1 \pm 0.2 \text{ pm}/\% \text{RH}$, $S_T = 10.1 \pm 0.6 \text{ pm/K}$ (resolution of optical interrogator ~1 pm)
 - Strongly temperature dependent (but potential to measure T at 0.1K)
 - B/Ge-doped silica fibres little radiation dependence after pre-irradiation, pure silica FBG tested to 2.5 MGy & 5×10¹⁵ 1MeV_{neq}/cm²
 - Packaging: stress-free
 - 72 FBGs (T+RH) active in CMS since 2014
- Long Period grating (LPG)

M. Consales et al. <u>https://doi.org/10.1364/OL.39.004128</u>

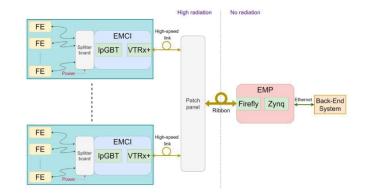
G. Berruti et al. <u>https://doi.org/10.1109/jphot.2014.2357433</u>

- Modulation of core refractive index, coupling of fundamental core mode and cladding modes → spectral variation of attenuation bands,
- $S_{RH} = 200 \text{ pm}/\% \text{RH}$ for low (<10%) RH (non-linear), $S_T = 250 \text{ pm/K}$
- Irradiated up to 2.5MGy: 10pm/kGy after 30kGy
- Packaging: pre-stressed
- Test installation in ATLAS
- More R&D required on radiation hardness (pure silica fibres), packaging & integration
 - Technology opportunity: Integration Co-cure FBG with carbon fibre: Real-time information of structure deformations/vibration response at sub-µm level
 - Used for AMS2 tracker prototype
 - Commercially used: FBG in wind turbines
 - Possibly combine with a few FSI lines for out-of-plane deformations/absolute distance references

MEMS

- MEMS are widely commercially available (cheap!). Our applications:
 - Accelerometers
 - Commercial: noise density a few 10 $\mu g/\sqrt{Hz}$
 - Development for gravitational wave experiments: $< 2 ng/\sqrt{Hz}$ (anti-spring geometry) B. Boom, <u>Thesis</u>
 - Pressure sensors
 - Humidity: ±1.5%RH
- Sense elements are typically piezoelectric, piezoresistive or capacitive + integrated electronics
- Radiation hardness is the issue H.R. Shea, <u>https://doi.org/10.1117/12.876968</u>
 - No commercial market for high radiation (but many devices are marketed as space-hard (30 krad))
 - Radiation-sensitive elements are
 - Mechanics (Si-bulk damage)
 - Sensors
 - Electronics
- Capacitive sensors fail early (few 10 krad) due to charging of dielectrics
- Piezoresistive or piezoelectric more radiation-resistant (>1 Mrad), damage more due to NIEL (depletion of minority carriers)
- There is no inherent reason why these sensors should not survive radiation, there is just no commercial market (yet)
 - But then, we know how to make radiation-hard electronics
 - Development is not trivial, but naively I suspect it can be done (see gravitational wave accelerometers)

Frequency scanning interferometry (FSI)


- Frequency scanning interferometry (FSI)
 - Originally developed for ATLAS ID alignment (but never used)
 - Continued development, commercialized (<u>Multiline™</u>, by Etalon)
 - Range: 0.1-30m (collimated), 1-30cm (uncoll.)
 - Channels: up to 96 simultaneous
 - Accuracy: 0.5 μm/m abs. distance, also measures vibration response
 - Latency: few s, offline computation
 - Future developments:
 - Improvements to accuracy
 - Pan-Tilt tracking-heads → multilateration co-ordinate measurements
 - Reflectors: Focused beam front-end → diffuse reflecting surface targets, miniaturized reflectors, foil-type reflectors
- Phase Modulation Interferometry (PaMIr)
 - Range, Channels, Sampling same as FSI
 - Continuous real-time measurement
 - Real time output =A-quad-B output
 - Resolution ≈ 10 nm, Accuracy: 0.2 µm/m displacement
 - Higher target speed: < 1m/s, Shorter latency: < 10 µs
 - Future developments:
 - Improve FSI ↔ PaMIr interaction (FSI gives absolute dimension, PaMIr high resolution, FSI used for PaMIr break recovery)

Sonar

- Capacitive transducers
 - Development of Polaroid camera range finder
 - 350V activation/ bias \rightarrow rapid response
 - 37mm diameter \rightarrow 50 kHz dominant frequency
 - can operate over wide pressure range (50 mbar to 35 bar)
- Typical systematic uncertainty on speed of sound measurement: $\Delta c = 0.025$ m/s
- Gas mixture measurement of more than two gases possible
- Mixture uncertainty $\Delta mix = \Delta c / \Delta m$ (m is molecular weight difference)
 - e.g. ATLAS cooling: $C_3F_8:N_2:CO_2 = 188:28:44 \rightarrow 0.08 \ \%C_3F_8/ms^{-1}$, $\Delta mix = 2 \times 10^{-5}$
 - Works better for large Δm
- Spinout: Xenon anaesthesia
- Probably not good enough for dew point measurement:
 - Molecular mass of water close to air
 - But, 300 ppm seems doable (dew point of -32°C)
- Possible uses in gas chamber mixture monitoring, gas RICH

Readout

- Standard monitoring readout system at CERN is ELMB
 - Based on ATmega128
 - Designed for large distributed multi-channel readout (CAN bus)
 - My view: not the most accessible
 - Example of better accessibility: Arduino (similarly based on ATmega128)
 - Accessibility is desirable because it allows for use in R&D and carry-over to final systems
 - Can we combine the functionality/scalability of the ELMB with the accessibility of the Arduino?
- Radiation hardness:
 - There is a space-rated (30 krad) ATmegaS128, which is a drop-in replacement
 - This is the core of the ELMB2
 - I am not aware of an Arduino with that chip, but should in principle be possible
 - For higher radiation environment:
 - Development of Embedded Monitoring and Control Interface (EMCI)/ Embedded Monitoring Processor (EMP)
 - This is building on datalinks developed for readout
- Similar standard for readout of fibre-optical systems desirable
 - The cost of FOS system is in the readout
 - Most cost-effective would be one (expensive) readout system and then several branches connected through a 64way (or similar) switch (relatively cheap)

Standardization

- I personally do not believe in top-down standardization, but think that the free market approach works best
 - As long as there are platforms to share solutions (example: Forum on Tracking Detector Mechanics)
- Highest potential for standardization:
 - Readout:
 - People do not want to spend time developing readout
 - Accessibility & costs will be arguments (in addition to requirements)
 - Possibly software
 - For large monitoring systems (whole experiments)
- Sensors themselves (and their services) are usually simple and require packaging specific to experiment – standardization potential is limited

Technologies summary

- Will give opinion on usefulness (would be nice useful essential) and state of development at different radiation levels (speculative should work, but needs demonstration advanced)
- My personal opinion apologies if you disagree/ I'm wrong
- There is also room for other technologies

		Setting			Status of development			Comments/R&D opportunities
		Monitoring	Debugging	R&D and QC	No radiation	Space	Hadron	
Temperature	RTDs							Integration
	FOS	?	?	?				0.1K
Pressure	MEMS					?	?	Rad hard MEMS
	Integration					?	?	
Magnet	ETI							Together with positioning
Position	FSI							3D triangular grid
	RASNIK					?	?	Sagitta measurements
Structural health/deformation	FBG							Integration
Vibration	MEMS							
Humidity	FBG							
	FOS							
Local gas flow	MEMS							
Gas mixture/contamination	Sonar						?	