Proposal for high mass:

- lineshape summary
- interference proposal

Lineshape with complex pole

☐ inclusive Xsec

8 TeV includes OFFP

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt8TeV

- 7 TeV soon: dFG are working on it
- residual uncertainty after OFFP inclusion are smaller than PDF,
 scale uncertainty

☐ mH shape (same for WW and ZZ):

- central values with OFFP + uncertainty bin by bin available http://personalpages.to.infn.it/~giampier/allheavy3.txt
 - -> central value bin by bin from POWHEG reweigthing at 7 TeV and 8TeV
 - -> % uncertainty bin by bin assumed the same in 7 TeV and 8 TeV

Interference in H->ZZ: xsec

Effect on total xsec is small: confirmed by Kauer and Passarino

$$gg\ (o H) o ZZ o lar l ar l
u_{l'} ar
u_{l'}$$
 (2l2v) and $gg\ (o H) o ZZ o lar l ll \ar l$ (4l) Integrated results

$p_T(V) > 7 \mathrm{GeV}$		σ [fb], pp , $\sqrt{s}=8$ TeV, single flavour (l, ν)			interference	
process	M_H	$ \mathcal{M}_H ^2$	$ \mathcal{M}_{cont} ^2$	$ \mathcal{M}_H + \mathcal{M}_cont ^2$	R_1	R_2
2l2v	500 GeV	0.4264(4)	0.19956(8)	0.6284(4)	1.0039(8)	1.006(2)
41	500 GeV	0.1131(5)	0.2649(9)	0.382(2)	1.010(5)	1.03(2)

$$(S+B)$$
-inspired interference measure: $R_1 = \sigma(|\mathcal{M}_{\mathsf{H}} + \mathcal{M}_{\mathsf{cont}}|^2) \Big/ \Big[\sigma(|\mathcal{M}_{\mathsf{H}}|^2) + \sigma(|\mathcal{M}_{\mathsf{cont}}|^2) \Big]$ (S/B) -inspired interference measure: $R_2 = \sigma(|\mathcal{M}_{\mathsf{H}}|^2 + 2\operatorname{Re}(\mathcal{M}_{\mathsf{H}}\mathcal{M}_{\mathsf{cont}}^*)) / \sigma(|\mathcal{M}_{\mathsf{H}}|^2)$

Interference in H->ZZ: mZZ shape

New results from Giampiero

Interference for ZZ

- ☐ total Xsec
 - 8 TeV small effect ~few %
 - -> much smaller than PDF and scale uncertainty
 - -> can we just neglect it?
 - 7 TeV numbers

can we assume I/(S+B) ~constant btw 7 and 8 TeV?

☐ mZZ shape: much larger effect

- I/(S+B) central values + uncertainty bin by bin comparing different recipes (as in previous slide)
- From Giampiero we get the R=[(S+B+I)/(S+B) -1] with the intermediate recipe and the uncertainty from the difference w.r.t. the other two recipes. Thus we will correct our signal by: S -> S+I = S+ (S+B) * R

Interference for WW

- ☐ Effect is huge on the inclusive xsec and on ALL the shapes (not just mH)
 - -> only way to go is to run MCFM
 - -> never in time for ICHEP
 - -> keep the huge uncertainty on xsec as for 2011 recipe:

$$1 + 1.5*(mH/TeV)^3$$