
Prototype of xrootd monitor with
hadoop backend

Sergey Mitsyn 2012-10-23

Plan

• 1) xrootd central monitor with Oracle backend
intro

• 2) Hadoop and Hbase microintroduction

• 3) Experience and expectations

• 4) Current state of hadoop deployment

xrootd monitoring/central storage

xrootd monitoring/central storage

xrootd monitoring/central storage

Oracle
DAO

Summaries
processor

Oracle
DAO

xrootd monitoring/central storage

Some Hadoop-based
summaries processor

Hadoop
DAO

Hadoop
DAO

Hadoop, a microintroduction

• Is an implementation of Google’s Map/Reduce
framework, a framework for distributed
computing.

• Consists of multiple services, including:
– HDFS – a distributed high-latency file system
– HBase – a distributed low-latency columns-based

database (based on HDFS)
• Data storage.

– mapreduce – a framework for Map/Reduce jobs
(processing)
• Data processing backend.

Hbase 1
• Column-based:

– Rowkey – Table – Column denotes a single value.
• Slightly more features than key-value based store.

– All values are uninterpreted bytes;
– Rowkey: global index, fast lookup;
– Columns: independent values for single row.

• Operations:
– Put/get/delete:

• Single row, multiple columns, atomic

– Batch put/delete:
• Multiple rows, non-atomic across multiple rows

• Naïve usage:
– Message ~ Row;
– Message field ~ Column.

HBase 2

• Fully consistent (as in the CAP-theorem, single
copy) (more strict than eventual consistency).
– Though eventual consistency would be fine too:

• The messages are never deleted, only inserted.

• Summaries are updated (overwrited) without dependency
on old values.

• No joins, no transactions, no global locks.

• No need of transactions:
– Denormalized data -> no secondary keys:

• Available atomic operations transfer database from one
consistent state to another (in terms of invariant).

Messages table format
Row Key

A concatenation of “end_time”
and sha1 hash of json string

Single column family ‘cf’

Fields/columns
cf:end_time

cf:server_domain … cf:file_size

1352000001:2e79ac6823b7d64 1352000001 www.com … 3133700

1352000001:a278399fb980a3cb

1352000001 www.com … 7654321

1352000002:… 1352000002 cern.ch … …

A concatenation of end_time and SHA1 hash of message enables us to:
1) Have unique row key for each message.
2) Have them sorted in “end_time” order for faster processing.

Processing

• Deduce source and destination from server
and client addresses, bytes read and written.

• Group by fields

– Source, destination, traffic type, etc

• Sum over transferred bytes.

• Write summaries to summaries table.

Processing 2

• Alternatives:
– Map/Reduce:

• code in Java

– External processing: load data to python, process, put
summaries back.
• Does not scale well (but with current load it doesn’t matter,

also may utilize more sophisticated schemes).

– Hadoop Hive, Pig:
• Hadoop services that translate their own code (HiveQL or Pig

Latin) to Map/Reduce classes to run locally or on cluster.
• No to code in Java, yes to code in “strange” languages.
• Provide Joins! But we don’t need them anyway…

Processing 3

• Hive:

– HiveQL: a language that strongly resembles SQL.

• Tables, views, SELECT … FROM … GROUP BY …, etc.

• Supports User-Defined Functions (UDF) written in
Python.

• Pig:

– Pig Latin: a language that resembles SQL a little.

• More procedural than HiveQL; relations.

Message storage formats

• Column-based:
– One field – one value:
– Fits the ActiveMQ message format.
– Easy to work with Hive, Pig.
– Big storage waste on metadata.

• “Flat” format:
– Concatenate all values and put to single column.
– Tightest storage utilization;
– Still possible to work with Pig/Hive;
– Dangerous in case of schema change.

• Json in single column:
– Messages from collector are also in JSON format.
– Preserves type info (no need to convert numbers to strings and back).
– Impossible to work with Pig/Hive (or yes to code in Java).

Hbase external interfaces

 2 protocols:

• REST:
– pycurl/urllib is enough.

– Cumbersome to use.

– Buggy.

• Thrift:
– Has external dependencies (thrift-lib-python and hbase

bindings rpm, available in dashboard-externals repo for
current HBase version).

– Easy to use (happybase in SVN, adapted for python 2.4).

– Binary (should be faster?).

Implemented

• DAO:
– For collector: 100% (including 3 message formats)
– For web UI: partly (transfers matrix and bins are

ready)

• Processing:
– In Python (external processing):

• ready but not in SVN (will commit soon)

– Pig, Hive:
• In very early development stage; currently produce exactly

the same results as python summaries processor.
• To implement as script templates or use packages (PyPig)?

– Results match these from Oracle backend.
• … more or less – some jobs are lost due to collector restarts.

More problems

• 1. Increasing keys for transfers are bad:
– All insertion load is going to be on single node, and

possibly summary queries also.
• But we need timestamp-like keys for queries on time interval.

http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/

http://hbase.apache.org/book/rowkey.design.html

• 2. We need >= 100 000 000 of entries for any
improvements over RDBMS!
– Currently no more than 100 000/day
http://hbase.apache.org/book/architecture.html#arch.overview

• 3. Optimizations ToDo: bloom filter, block caches, local
data access…

 http://hbase.apache.org/book/perf.hdfs.configs.html

http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://hbase.apache.org/book/rowkey.design.html
http://hbase.apache.org/book/architecture.html
http://hbase.apache.org/book/perf.hdfs.configs.html

Using HBase

• To begin learning, one should try HBase shell:
– 1) Login to any host with HBase available (or

install yourself)
– See next slides…

– 2) # hbase shell

– 3) perform all of
http://hbase.apache.org/book/quickstart.html
p.1.2.3 Shell Exercises.
• Supports put, get, delete, create/drop table, etc…

• Don’t drop any of existing tables, please!

http://hbase.apache.org/book/quickstart.html

Local Hadoop installation

• Local installations for development:

– Local or pseudo-distributed: every service on the
same node.

– Easy installation as in the Cloudera QuickStart
guide:
• https://ccp.cloudera.com/display/CDH4DOC/CDH4+Quick+Start+Guide

– Nice to install for development.

– Not suitable for application performance
measurements (very low!).

The available Hadoop installations:

• CERN’s at lxfssm4401:
– HDFS: Namenode at lxfssm4401;
– Hbase: master at the same host; thrift;
– mapred/YARN: look tomorrow!
– Gateway at dashboard48.

• (just a node with software and configuration, but no data or mapred tasks)

• Dashboard’s at dashboard07:
– 4 hosts: 07, 08, 64, 65.
– (currently) limited reliability:

• Crash of dashboard07 stops everything (no SecondaryNameNode)
• Crash of any 2 of 3 other machines at the same time is tolerable.

– mapred, HDFS, Pig, Hive, HBase with thrift and REST interfaces;
– Unstable
– Future: development only? Deprecate & remove?

Configuring Hadoop: fail

Hadoop Gateway

• Is simply a node without any data or mapred services
running,
– … but may run any data access services like REST or Thrift;

– may run Java applications for Hadoop.

• All you need are:
– client packages (e.g. yum install hbase-rest)

– Copy-paste HBase config (I hope someday you may find it
in Dashboard wiki)

• Why you may need that for:
– An HBase shell without ssh access to the cluster;

– To run arbitrary service.

The end

• Questions?

