CP-conserving 2HDM benchmarks

Howard E. Haber LHCXSWG meeting 26 June 2013

<u>Outline</u>

- 1. The Higgs basis of the 2HDM
- 2. The CP conserving 2HDM with a \mathbb{Z}_2 discrete symmetry
- 3. Ingredients for the CP-conserving 2HDM benchmarks
 - h is the observed SM-like Higgs boson
 - $\bullet~H$ is the observed SM-like Higgs boson

The Higgs basis of the 2HDM

Start with the 2HDM scalar doublet, hypercharge-one fields, Φ_1 and Φ_2 , in a generic basis, where $\langle \Phi_i \rangle = v_i$, and $v^2 \equiv |v_1|^2 + |v_2|^2 = (246 \text{ GeV})^2$. It is convenient to define new Higgs doublet fields:

$$H_1 = \begin{pmatrix} H_1^+ \\ H_1^0 \end{pmatrix} \equiv \frac{v_1^* \Phi_1 + v_2^* \Phi_2}{v}, \qquad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix} \equiv \frac{-v_2 \Phi_1 + v_1 \Phi_2}{v}.$$

It follows that $\langle H_1^0 \rangle = v/\sqrt{2}$ and $\langle H_2^0 \rangle = 0$. This is the *Higgs basis*, which is uniquely defined up to $H_2 \to e^{i\chi}H_2$. The scalar potential is:

$$\begin{aligned} \mathcal{V} &= Y_1 H_1^{\dagger} H_1 + Y_2 H_2^{\dagger} H_2 + [Y_3 H_1^{\dagger} H_2 + \text{h.c.}] + \frac{1}{2} Z_1 (H_1^{\dagger} H_1)^2 \\ &+ \frac{1}{2} Z_2 (H_2^{\dagger} H_2)^2 + Z_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + Z_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) \\ &+ \left\{ \frac{1}{2} Z_5 (H_1^{\dagger} H_2)^2 + \left[Z_6 (H_1^{\dagger} H_1) + Z_7 (H_2^{\dagger} H_2) \right] H_1^{\dagger} H_2 + \text{h.c.} \right\} ,\end{aligned}$$

where Y_1 , Y_2 and Z_1 , ..., Z_4 are real and uniquely defined, whereas Y_3 , Z_5 , Z_6 and Z_7 are complex and transform under the rephasing of H_2 ,

$$[Y_3, Z_6, Z_7] \to e^{-i\chi}[Y_3, Z_6, Z_7]$$
 and $Z_5 \to e^{-2i\chi}Z_5$.

After minimizing the scalar potential, $Y_1 = -\frac{1}{2}Z_1v^2$ and $Y_3 = -\frac{1}{2}Z_6v^2$. This leaves 11 free parameters: 1 vev, 8 real parameters, Y_2 , $Z_{1,2,3,4}$, $|Z_{5,6,7}|$, and two relative phases.

The charged Higgs boson is the charged component of the Higgs-basis doublet H_2 , and its mass is given by $m_{H^{\pm}}^2 = Y_2 + \frac{1}{2}Z_3v^2$. The three physical neutral Higgs boson mass-eigenstates are determined by diagonalizing a 3×3 real symmetric squared-mass matrix that is defined in the Higgs basis

$$\mathcal{M}^{2} = v^{2} \begin{pmatrix} Z_{1} & \operatorname{Re}(Z_{6}) & -\operatorname{Im}(Z_{6}) \\ \operatorname{Re}(Z_{6}) & \frac{1}{2}Z_{345} + Y_{2}/v^{2} & -\frac{1}{2}\operatorname{Im}(Z_{5}) \\ -\operatorname{Im}(Z_{6}) & -\frac{1}{2}\operatorname{Im}(Z_{5}) & \frac{1}{2}Z_{345} - \operatorname{Re}(Z_{5}) + Y_{2}/v^{2} \end{pmatrix},$$

where $Z_{345} \equiv Z_3 + Z_4 + \operatorname{Re}(Z_5)$. The diagonalizing matrix is a 3×3 real orthogonal matrix that depends on three angles: θ_{12} , θ_{13} and θ_{23} . The corresponding neutral Higgs masses will be denoted: m_1 , m_2 and m_3 . Under the rephasing $H_2 \to e^{i\chi}H_2$,

 $\theta_{12}, \, \theta_{13}$ are invariant, and $\theta_{23} \rightarrow \theta_{23} - \chi$.

The CP-conserving 2HDM

Here, we will focus on the case of a CP-conserving scalar potential and vacuum. In this case, one can choose χ such that Y_3 , Z_5 , Z_6 and Z_7 are all real. The so-called *real Higgs basis* is not unique since we can still redefine $H_2 \rightarrow -H_2$. We shall use this freedom to fix $Z_6 > 0$, (the case of $Z_6 = 0$ must be treated separately) after which the real Higgs basis is unique. Then, we can identify

$$c_{12} = \sin(\beta - \alpha),$$

$$s_{12} = -\cos(\beta - \alpha),$$

$$\theta_{13} = \theta_{23} = 0,$$

where β and α refers to some generic basis which a priori has no special meaning, but $\beta - \alpha$ is an observable. Note that $m_2 > m_1$ implies that $\sin 2(\beta - \alpha) < 0$.

Notation: $c_{\beta-\alpha} \equiv \cos(\beta-\alpha)$ and $s_{\beta-\alpha} \equiv \sin(\beta-\alpha)$.

In addition, we shall consider particular models of the Higgs-fermion Yukawa couplings such that the neutral Higgs couplings to fermions are flavor-diagonal (eg. Type I or II). To implement this, we impose a \mathbb{Z}_2 symmetry on the dimension-four interactions of the Higgs Lagrangian in some basis $\{\Phi_1, \Phi_2\}$. With respect to this basis, we can define $\tan \beta = \langle \Phi_2^0 \rangle / \langle \Phi_1^0 \rangle$. The existence of this \mathbb{Z}_2 symmetry imposes the following constraint on the Higgs basis scalar potential parameters:

$$(Z_6+Z_7)(Z_2-Z_1)(Z_1+Z_2-2Z_{345})+(Z_6-Z_7)\left[(Z_2-Z_1)^2-4(Z_6+Z_7)^2\right]=0,$$

where $Z_{345} \equiv Z_3 + Z_4 + Z_5$. The parameter β is also determined (by convention, $0 \le \beta \le \frac{1}{2}\pi$),

$$\tan 2\beta = \frac{2(Z_6 + Z_7)}{Z_2 - Z_1}$$

The case of $Z_1 = Z_2$ and $Z_6 = -Z_7$ must be treated separately. In this case, the existence of a \mathbb{Z}_2 symmetry is guaranteed, and the corresponding value of β is determined from the following quadratic equation,

$$(Z_1 - Z_{345})\tan 2\beta + 2Z_6(1 - \tan^2 2\beta) = 0.$$

This special case arises in the case of the MSSM Higgs sector, where

$$Z_1 = Z_2 = \frac{1}{4}(g^2 + g'^2)\cos^2 2\beta, \qquad Z_3 = Z_5 + \frac{1}{4}(g^2 - g'^2), \qquad Z_4 = Z_5 - \frac{1}{2}g^2,$$
$$Z_5 = \frac{1}{4}(g^2 + g'^2)\sin^2 2\beta, \qquad Z_7 = -Z_6 = \frac{1}{4}(g^2 + g'^2)\sin 2\beta\cos 2\beta.$$

Ingredients for the CP-conserving 2HDM benchmarks

<u>Case 1</u>: Identify h with the observed Higgs boson, with $m_h \simeq 126$ GeV.

- 1. Choose $c_{\beta-\alpha} \ll 1$ to give SM-like hVV couplings.
- 2. Z_1 is determined by

$$Z_1 v^2 = m_h^2 - Z_6 v^2 \frac{c_{\beta-\alpha}}{s_{\beta-\alpha}}$$

- 3. Z_2 is determined in terms of β , Z_6 and Z_7
- 4. Imposing the \mathbb{Z}_2 symmetry, Z_{345} is determined in terms of Z_6 and Z_7 (once Z_1 and Z_2 are fixed).
- 5. Scan in the couplings Z_4 , Z_5 , Z_6 and Z_7 [where $Z_6 > 0$ and $s_{\beta-\alpha}c_{\beta-\alpha} < 0$ by convention].

The masses m_H , m_A and $m_{H^{\pm}}$ are determined by:

$$m_{H}^{2} = m_{h}^{2} - \frac{Z_{6}v^{2}}{s_{\beta-\alpha}c_{\beta-\alpha}},$$

$$m_{A}^{2} = m_{H}^{2} + \left[\frac{c_{\beta-\alpha}}{s_{\beta-\alpha}}Z_{6} - Z_{5}\right]v^{2},$$

$$m_{H^{\pm}}^{2} = m_{A}^{2} - \frac{1}{2}(Z_{4} - Z_{5})v^{2}.$$

In the case of $Z_6 = c_{\beta-\alpha} = 0$,

$$m_h^2 = Z_1 v^2 ,$$

$$m_{H,A}^2 = Y_2 + \frac{1}{2} (Z_3 + Z_4 \pm Z_5) v^2 ,$$

$$m_{H^{\pm}}^2 = Y_2 + \frac{1}{2} Z_3 v^2 .$$

<u>Remark</u>:

Note that $c_{\beta-\alpha} \ll 1$ if either $m_A \gg m_h$ and/or $|Z_6| \ll 1$.

<u>Case 2</u>: Identify H with the observed Higgs boson, with $m_H \simeq 126$ GeV.

- 1. Choose $s_{\beta-\alpha} \ll 1$ to give SM-like HVV couplings.
- 2. Z_1 is determined by

$$Z_1 v^2 = m_H^2 + Z_6 v^2 \frac{s_{\beta-\alpha}}{c_{\beta-\alpha}}$$

- 3. Z_2 is determined in terms of β , Z_6 and Z_7
- 4. Imposing the \mathbb{Z}_2 symmetry, Z_{345} is determined in terms of Z_6 and Z_7 (once Z_1 and Z_2 are fixed).
- 5. Scan in the couplings Z_4 , Z_5 , Z_6 and Z_7 [where $Z_6 > 0$ and $s_{\beta-\alpha}c_{\beta-\alpha} < 0$ by convention]. Choose a value for $Z_6/s_{\beta-\alpha}$ such that $m_h^2 > 0$ consistent with the LEP Higgs bounds.

The masses m_H , m_A and $m_{H^{\pm}}$ are determined by:

$$m_h^2 = m_H^2 + \frac{Z_6 v^2}{s_{\beta - \alpha} c_{\beta - \alpha}},$$

$$m_A^2 = m_H^2 + \left[\frac{c_{\beta - \alpha}}{s_{\beta - \alpha}} Z_6 - Z_5\right] v^2,$$

$$m_{H^{\pm}}^2 = m_A^2 - \frac{1}{2} (Z_4 - Z_5) v^2.$$

In the case of $Z_6 = s_{\beta-\alpha} = 0$,

$$m_H^2 = Z_1 v^2 ,$$

$$m_{h,A}^2 = Y_2 + \frac{1}{2} (Z_3 + Z_4 \pm Z_5) v^2 ,$$

$$m_{H^{\pm}}^2 = Y_2 + \frac{1}{2} Z_3 v^2 .$$

<u>Remark</u>:

Note that $s_{\beta-\alpha} \ll 1$ if $|Z_6| \ll 1$ and $Z_1v^2 > Y_2 + \frac{1}{2}(Z_3 + Z_4 + Z_5)v^2$.