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Thanks to the organizers 

 I am very happy to be here, in the company of distinguished 
lecturers and great audience of future scientists ! 

 

 

 

     Many thanks to Vincenzo Chiochia ! 



A couple of remarks 
• It would be crazy to attempt a comprehensive review of basic Statistics 

used in HEP in three hours’ time (20 hours would be a fair stipulation) 
• Besides, there are plenty of excellent resources about that around 

(linkography later). All you need, in order to make good use of it, is  
(A) sufficient motivation, 
(B) a basic understanding of very few important concepts, 
(C) the realization that you should not try to reinvent the wheel every time 

 
• What I also most definitely refuse to do is to provide you with ready-to-

use tools.  
– There is a huge amount of stuff at your fingertips (root / roofit / roostats 

tutorials, as an example).  
– Chances are that if you are given a recipe you will use it blindly, without 

thinking much about the context and implications 
– Much better is to try the hard way – understand the issues first ! 

 
• I will instead use these three hours to try and provide you with (A) and 

(B), but without further study on your part it will be time lost for you and, 
what’s worse, for me ;-) 
 



Reinventing the wheel 

• As for (C): In my  experience reviewing analyses, I find that often 
conceptual mistakes are made which I assumed people could not possibly 
have done. These are the hardest to find and correct! As a collectivity, HEP 
physicists show a good amount of serendipity.  
 

  Our effort should aim at raising our minimal level of understanding of 
Statistics, rather than striving for excellence. 

  
 And most of all, we need to fight the attitude “Statistics is trivial, so I 

prefer to figure it all out by myself”. As all slumbers of reason, it produces 
monsters. 
– I know you love to code, and you are very, very good at it. But it just does not 

make sense to spend time producing wrong code when somebody else (often 
more expert on the matter) produced the right one for you. You are a 
physicist, not a programmer, for God’s sake! 

– RTFM! or better: read the bibliography.  Read The Bibliography! RTB! 
 Physicists are autharchic, but Statistics is harder than most of them think. We 

do not need to embarrass ourselves into producing results with awkward 
statistical methods.  

 



What it is that we do 
 

• Regarding point (B) above (basic understanding of key concepts), it is important to 
note that particle physicists are very likely to certain to have to deal, at the very 
least, with a set of “core” statistical problems in their data analysis activities.  
 

• We can try and cover ground effectively if we focus on the following “core” 
activities: 
 
– histogram fitting, combining results (point estimation) 
– construction of confidence intervals (interval estimation) 
– significance calculations (test of hypotheses) 

 

• Introducing and discussing the above is more than enough to keep us busy for the 
time we will spend together.  
 

• You will see that my slides are thick – you will not get everything on the first pass; 
going through them at some other time will be proficuous 
 

• This leads to my table of contents  



Contents 

• Day 1: Introduction, Basic stuff, some key concepts, a few examples 
– Why Statistics matters: a couple of examples 
– Distributions, errors, basic definitions 
– Combining measurements 
– Weighted averages and correlations 

 

• Day 2: Interval estimation 
– The method of maximum likelihood 
– Probability: the two schools 
– The Neyman construction and beyond 

 

• Day 3: Advanced techniques 
– Comparisons of interval estimation techniques 
– The likelihood principle, ancillarity and conditioning 
– Nuisance parameters 
– Goodness of Fit; significance; Look-Elsewhere Effect 
– CLs and the Higgs combination 



Statistics matters! 

• To be a good physicist, one MUST understand Statistics: 
 
– “Our results were inconclusive, so we had to use Statistics” 
 Often in that situation in HEP ! 
 
– A good knowledge of Statistics allows you to make optimal use of your  

measurements, obtaining more precise results than your colleagues, other 
things being equal 

 
– It is very easy to draw wrong inferences from your data, if you lack some basic 

knowledge (it is easy regardless!) 
 

– Foundational Statistics issues play a role in our measurements, because 
different statistical approaches provide different results 
• There is nothing wrong with this: the different results just answer different questions 
• The problem usually is, what is the question we should be asking ?  

 
 Not always trivial to decide! 

 

• I will try to plant these few concepts in your brain by examples, today. If I 
succeed, it will not be time spent in vain. 



Warm-up example 1: why we need to 
understand error propagation 

• We all know how to propagate uncertainties from some measurements (random 
variables!) xi to a derived quantity y = f(x):  
 

 
 
 this is just standard error propagation, for uncorrelated random variables xi. We 

will spend more time around this formula later on.  
 

 What we neglect to do sometimes is to stop and think  
 at the consequences of that simple formula, in the  
 specific cases to which we apply it. That’s because we  
 have not understood well enough what it means. 

 
• Let us take the problem of weighting two objects  A and B  
 with a two-arm scale offering a constant accuracy, say  
 1 gram. You have time for two weight measurements.  
  
 What do you do ? 

– weight A, then weight B 
– something else ? Who has a better idea ? 
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Smart weighting 

• If you weight separately A and B, your results will be affected by the stated 
accuracy of the scale: A =  = 1g , B =  = 1g. 
 

• But if you instead weighted S=A+B, and then weighted D=B-A by putting 
them on different dishes, you would obtain 
 
 
 
 
 
 

 Your uncertainties on A and B have become 1.41 times smaller! This is the 
result of having made the best out of your measurements, by making 
optimal use of the information available. When you placed one object on a 
dish, the other one was left on the table, begging to participate! 
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Addendum: fixed % error 

• What happens to the previous problem if instead of a constant error of 1 gram, the 
balance provides measurements with accuracy of k% ? 

• If we do separate weightings, of course we get A=kA, B=kB. But if we rather 
weight S = B+A and D = B-A, what we get is 
 
 
 
 
 
 
 
 

• The procedure has shared democratically the uncertainty in the weight of the two 
objects. If A=B we do not gain anything from our “trick” of measuring S and D: 
both A=kA and B=kB are the same as if you had measured A and B separately. 
 

• Of course the limiting case of A>>B corresponds instead to a very inefficient 
measurement of B, while the uncertainty on A converges to what you would get if 
you weighted it twice. 
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Warm-up example 2: why it is crucial 
to know basic statistical distributions 

• I bet all of you know the expression, and at least the basic properties, of the following: 
– Gaussian (AKA Normal) distribution 
– Poisson distribution 
– Exponential distribution 
– Uniform distribution 
– Binomial and Multinomial distribution 

• A mediocre particle physicist can live a comfortable life without having other 
distributions at his or her fingertips. However, I argue you should at the very least 
recognize and understand : 
– Chisquare distribution 
– Compound Poisson distribution 
– Log-Normal distribution 
– Gamma distribution 
– Beta distribution 
– Cauchy distribution (AKA Breit-Wigner) 
– Laplace distribution 
– Fisher-Snedecor distribution 

• There are many other important distributions –the list above is just a sample set. 
 

• We have better things to do than going through the properties of all these important 
functions. However, most Statistics books discuss them carefully, for a good reason.  

• We can make at least just an example of the pitfalls you may avoid by knowing they exist! 



The Poisson distribution 

• We all know what the Poisson distribution is: 
 
 
 
 
– its expectation value is E(n) = m 

– its variance is V(n) = m 

 
 The Poisson is a discrete distribution. It describes the probability of getting 

exactly n events in a given time, if these occur independently and randomly at 
constant rate μ 

 
Other fun facts: 
 
– it is a limiting case of the Binomial [                                    ]  for p0, in the limit 

of large N 
– it converges to the Normal for large m 
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The Compound Poisson distribution 

• Less known is the compound Poisson distribution, which describes the 
sum of N Poisson variables, all of mean m, when N is also a Poisson 
variable of mean l: 
 
 
 
– Obviously the expectation value is E(n)=lm 

– The variance is V(n) = lm(1+m) 

 
• One seldom has to do with this distribution in practice. Yet I will make the 

point that it is necessary for a physicist to know it exists, and to recognize 
the difference it makes with the simple Poisson distribution. 
 

    Why ? Should you really care ? 
 
 Let me ask before we continue: how many of you knew about the existence 

of the compound Poisson distribution ? 
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In 1968 the gentlemen named in the above clip observed four 
tracks in a Wilson chamber whose apparent ionization was 
compatible with the one expected for particles of charge  2/3e.  
Successively, they published a paper where they showed a track 
which could not be anything but a fractionary charge particle! 
In fact, it produced 110 counted droplets per unit path length 
against an expectation of 229 (from the 55,000 observed tracks). 
 
What is the probability to observe such a phenomenon ?  
We compute it in the following slide. 
 
Note that if you are strong in nuclear physics and thermodynamics, 
you may know that a scattering interaction produces on  
average about four droplets. The scattering and the  
droplet formation are independent Poisson processes. 
However, if your knowledge of Statistics is poor, this observation  
does not allow you to reach the right conclusion. What is the  
difference, after all, between a Poisson process and the  
combination of two ? 

PRL 23, 658 (1969) 



Significance of the observation 

• Case A: single Poisson process, with m=229: 
 
 
 

Since they observed 55,000 tracks, seeing at least one track with P=1.6x10-18 has 
a chance of occurring of 1-(1-P)55000, or about 10-13 

 

• Case B: compound Poisson process, with lm=229, m=4: 
One should rather compute 
 
 
 
 
from which one gets that the probability of seeing at least one such track is 

rather 1-(1-P’)55000, or 92.5%. Ooops! 
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Bottomline:  
You may know your detector and the underlying physics as well as you know your ***, 
but only your knowledge of basic Statistics prevents you from being fooled ! 



Warmup example 3: know the 
properties of your estimators 

• Issues (and errors hard to trace) may arise in the simplest of 
calculations, if you do not know the properties of the tools you are 
working with. 

 
• Take the simple problem of combining three measurements of the 

same quantity. Make these be counting rates, i.e. with Poisson 
uncertainties: 
 
– A1 = 100 
– A2 = 90 
– A3 = 110 

 
 These measurements are fully compatible with each other, given that 

the estimates of their uncertainties are sqrt(Ai)={10, 9.5, 10.5} 
respectively. We may thus proceed to average them, obtaining  

 <A> = 100.0+-5.77 



 Now imagine, for the sake of argument, that we were on a lazy mood, 
and rather than do the math we used a c2 fit to evaluate <A>.  

  
 Surely we would find the same answer as the simple average of the 

three numbers, right?  
  
   … Wrong! 
 
 

In general, a c2  statistic results from a  
weighted sum of squares; the weights 
should be the inverse variances of the true 
values.  
Unfortunately, we do not know the latter! 
 

c2 fit        Likelihood fit 

Let us dig a little bit into this matter. This 
requires us  –the horror, the horror– to 
study the detailed definition of the  
test statistics we employ in our fits. 

the c2 fit does not “preserve 
the area” of the fitted histogram 



Two chisquareds and a Likelihood 
• The “standard” definition is called  “Pearson’s c2”: 
 

 
 
 

• The other (AKA “modified” c2) is called “Neyman’s c2”: 
 

 
 
 

• While c2
P uses the best-fit variances at the denominator, c2

N uses the individual estimated 
variances. Although both these least-square estimators have asymptotically a c2 
distribution, and display optimal properties, they use approximated weights. 

 The result is a pathology:  neither definition preserves the area in a fit! 
 c2

P overestimates the area, c2
N underestimates it. 

 
• The maximization of  the Poisson maximum likelihood, 
 

 
 

  instead preserves the area, and obtains exactly the result of the simple average. 
     Proofs in the next slides. 
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(here n is the best fit value, 
Ni are the measurements) 
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Proofs – 1: Pearson’s c2 

• Let us compute n from the minimum of c2
P: 

 
 
 
 
 
 
 
 
 
 
 
 
 n is found to be the square root of the average of squares, and is 

thus by force an overestimate of the area! 
 

k

N

n

NknNn

n

nNNnn

n

n

nN

k

i

i

k

i

ii

k

i

k

i

iiP

k

i

i
P
































1

2

1

222

1

2

1
2

22

1

2
2

)(0

)()(2
0

)(

c

c
note: a variable weight! 



2 – Neyman’s c2 

• If we minimize c2
N , 

  
 
 
 we have: 
 

 
 
 
 
 
 
 
 

  
 
 
 
 the minimum is found for n equal to the harmonic mean of the inputs – which is 

an underestimate of the arithmetic mean! 
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Just developing  
the fraction leads to  

which implies that 

from which we finally get  



3 – The Poisson Likelihood LP 

• We minimize LP by first taking its logarithm, and find: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 As predicted, the result for n is the arithmetic mean. Likelihood fitting 
preserves the area! 
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Putting it together • Take a k=100-bin histogram, fill it 
with random entries from a 
Poisson distribution of mean m 

• Fit it to a constant by minimizing 
c2

P , c
2

N , -2ln(LP)  in turn 

• Study ratio of result to true m as a 
function of m 

 

• One observes that the 
convergence is slowest for 
Neyman’s c2, but the bias is 
significant also for c2

P  

• This result depends only 
marginally on k  

• Keep that in mind when you fit a 
histogram! Standard ROOT  

 fitting uses V=Ni  Neyman’s def! 

 

 



Discussion 
• What we are doing when we fit a constant through a set of k bin contents is to extract the common, 

unknown, true value m from which the entries were generated, by combining the k measurements 

 

• We have k Poisson measurement of this true value. Each equivalent measurement should have the same 
weight in the combination, because each is drawn from a Poisson of mean m, whose true variance is m. 

 

• But having no m to start with, we must use estimates of the variance as a (inverse) weight. So the c2
N 

gives the different observations different weights 1/Ni. Since negative fluctuations (Ni < m) have larger 
weights, the result is downward biased! 

 

• What c2
P does is different: it uses a common weight for all measurements, but this is of course also an 

estimate of the true variance V = m : the denominator of c2
P  is the fit result for the average, m*. Since 

we minimize c2
P to find m*, larger denominators get preferred, and we get a positive bias: m* > m! 

 

• All methods have optimal asymptotic properties: consistency, minimum variance. However, one seldom 
is in that regime. c2

P  and c2
N also have problems when Ni is small (non-Gaussian errors) or zero ( 

c2
N undefined). These drawbacks are solved by grouping bins, at the expense of loss of information. 

 

• LP does not have the approximations of the two sums of squares, and it has in general better properties.  
Cases when the use of a LL yields problems are rare. Whenever possible, use a Likelihood! 



More on combining measurements 
• The previous example shows the tricks that even the dumbest simple 

average of the most common random variables – event counts –  may hide 
if we do not pay attention to their sampling properties  
 

• I wish to discuss now the bare bones of the problem of combining 
measurements, getting eventually to the point of spotting potential issues 
arising from correlations.  
 

• We should all become familiar with these issues, because for HEP 
physicists combining measurements is day-to-day stuff. 
 

• To get to the heart of the matter we need to fiddle with a few basic 
concepts 
 

• It is stuff you should all know well, but if you do not, I am not going to 
leave you behind 

     the next few slides contain a reminder of a few  
   fundamental definitions.  



Mean and Variance 

• The probability density function (pdf) f(x) of a random variable x is a normalized function 
which describes the probability to find x in a given range:    
 

    P(x,x+dx) = f(x)dx 
 

– defined for continuous variables. For discrete ones, e.g. P(n|m)=e-mmn/n! is a probability tout-court. 

 
• The expectation value of the random variable x is then defined as 
 
 
 
• E[x], also called mean of x, thus depends on the distribution f(x). Of crucial importance is 

the “second central moment” of x, 
 
 
 
 also called variance. The variance enjoys the property that  
 
    E[(x-E[x])2] = E[x2]-m2,  as is trivial to show. 

 
• Also well-known is the standard deviation  = sqrt(V[x]).  
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Covariance and correlation 
 

• If you have two random variables x,y you can also define their covariance, defined as 
 
 
 
 
 

• This allows us to construct a covariance matrix V, symmetric, and with positive-defined 
diagonal elements, the individual variances x

2,y
2: 

 
 
 
 

• A measure of how x and y are correlated is given by the correlation coefficient r: 
 
 

 
• Note that if two variables are independent, f(x,y)=fx(x)fy(y), then r=0 and  
 E[xy] = E[x]E[y] = mxmy.  
  However, E[xy]=E[x]E[y] is not sufficient for x and y be independent! In everyday 

usage one speaks of “uncorrelated variables” meaning “independent”. In statistical 
terms,uncorrelated is much weaker than independent! 
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The Error Ellipse 
 When one measures two correlated parameters q = (q1,q2), in the large-sample limit their 

estimators will be distributed according to a two-dimensional Gaussian centered on q. 
One can thus draw an “error ellipse” as the locus of points where the c2 is one unit away 
from its minimum value (or the log-likelihood equals ln (Lmax)-0.5). 
 

 The location of the tangents to the axes provide the standard  
 deviation of the estimators. The angle f is given by 

 
  

 
 

A measurement of one 
parameter at a given value of 
the other is determined by the 
intercept on the line connecting 
the two tangent points.  
The uncertainty of that single 
measurement, at a fixed value 
of the other parameter, is  
 

The correlation coefficient r is the 
distance of each axis from the 
tangent point, in units of the 
corresponding standard deviation  
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Error propagation 
 Imagine you have n variables xi. You do not know their pdf but at least know their mean and 

covariance matrix.  Now say there is a function y of the xi and you wish to determine its pdf: 
you can expand it in a Taylor series around the means: 

 
 
 

 From this one can easily show (backup slide) that the expectation value of y and y2 are, to 
first order, 

       and the variance of y is then the 
      second  term in this expression. 

  
  
 In case you have a set of m functions y(x), you can build the covariance matrix 
 

 
 

 This is often expressed in matrix form once one  
 defines a matrix of derivatives A, 
 
 The above formulas allow one to “propagate” the variances from the xi to the yj, but this is 

only valid if it is meaningful to expand linearly around the mean!   
   Beware of routine use of these formulas in non-trivial cases. 
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How it works 

• To see how standard error propagation works, let us use the formula for the 
variance of a single y(x) 

 
 
 
 
 
 
 
 
 
 
 
 

• One thus sees that for uncorrelated variables x1,x2 (V12=0), the variances of their 
sum add linearly, while for the product it is the relative variances which add 
linearly. 
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                 for the sum, 
 
 
 
 
for the product. 

and consider the simplest examples 
with two variables x1,x2: their sum and 
product. 



Estimators: a few more definitions 

• Given a sample {xi} of n observations of a random variable x, drawn from a pdf f(x), 
one may construct a statistic: a function of {xi} containing no unknown parameters. An 
estimator is a statistic used to estimate some property of a pdf.  

• Estimators are labeled with a hat (will also use the * sign here) to distinguish them 
from the respective true, unknown value. 

• Estimators are consistent if they converge to the true value for large n. 
• The expectation value of an estimator q* having a sampling distribution H(q*;q) is 

 
 

• Simple example of day-to-day estimators: the sample mean and the sample variance 
 
 
 

• The bias of an estimator is b=E[q*]-q. An estimator can be consistent even if biased: 
the average of an infinite replica of experiments with finite n will not in general 
converge to the true value, even if E[q*] will tend to q as n tends to infinity. 

• Other important properties of estimators (among which usually there are tradeoffs): 
– efficiency:  an efficient estimator is the one with minimum variance 
– robustness: the estimate is  less dependent on the true distribution f(x) for a more robust 

estimator 
– simplicity:  a generic property of estimators which produce unbiased, Normally distributed results, 

uncorrelated with other estimates. 
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Maximum Likelihood 
• Take a pdf for a random variable x, f(x; q) which is analytically known, but for which the value of m 

parameters q is not. The method of maximum likelihood allows us to estimate the parameters q if 
we have a set of data xi distributed according to f. 

 

• The probability of our observed set {xi} depends on the distribution of the pdf. If the 
measurements are independent, we have  

 

 

• The likelihood function  

  

 

 is then a function of the parameters q only. It is written as the joint pdf of the xi, but we treat those 
as fixed.  L is not a pdf! 

 

• Using L(q) one can define “maximum likelihood estimators” for the parameters q as the values 
which maximize the likelihood, i.e. the solutions   of the equation 

       

    for j=1…m 
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Note: The ML requires (and exploits!) 
the full knowledge of the distributions 



The method of least squares 
• Imagine you have a set of n independent measurements yi –Gaussian random 

variables– with different unknown means li and known variances i
2. The yi can 

be considered a vector having a joint pdf which is the product of n Gaussians: 
 

 
 

• Let also λ be a function of x and a set of m parameters q, l(x;q1…qm). In other 
words, λ is the model you want to fit to your data points y(x). 

 We want to find estimates of q. 
 
 If we take the logarithm of the joint pdf we get the log-likelihood function, 
 
 
 
 which is maximized by finding q such that the following quantity is minimized: 
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• The expression written above near the minimum follows a c2 distribution 
only if the function l(x;q) is linear in the parameters q and if it is the true 
form from which the yi were drawn. 
 

• The method of least squares given above works also for non-Gaussian errors 
σi, as long as the yi are independent. 
 

• If the measurements are not independent, the joint pdf will be a n-
dimensional Gaussian. Then the following generalization holds: 
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Note that unlike the ML, the c2 only requires a 
unbiased estimate of the variance of a distribution 
to work! 

λ(x;a,b,c) 
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Linearization and correlation 
• Taylor series expansion is a great tool, and in most cases we need not even remind 

ourselves that we are stopping at the first term…  
 But in the method of LS the linear approximation in the covariance may lead to strange 

results more often than one would think 
• Let us consider the LS minimization of a combination of two measurements of the same 

physical quantity k, for which the covariance terms be all known.  
 In the first case let there be a common offset error c . We may combine the two 

measurements x1, x2 with LS by computing the inverse of the covariance matrix: 
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The minimization of the above expression leads to the following 
expressions for the best value of k and its standard deviation: 
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The best fit value does not depend on c, and corresponds 
to the weighted average of the results when the individual 
variances 1

2 and 2
2 are used. 

This result is what we expected, and all is good here.  



Normalization error: Hic sunt leones 
 In the second case we take two measurements of k having a common scale error.  

 The variance, its inverse, and the LS statistics might be written as follows: 
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This time the minimization produces these results  
for the best estimate and its variance: 
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Before we discuss these formulas, let us test 
them on a simple case: 
 x1=10+-0.5,   
 x2=11+-0.5,  
 f=20% 
This yields the following disturbing result: 
 k = 8.90+-2.92 ! 
What is going on ??? 
 



Shedding some light  
on the disturbing result 

• The fact that averaging two measurements  with the 
LS method may yield a result outside their range 
requires more investigation. 

• To try and understand what is going on, let us rewrite 
the result by dividing it by the weighted average result 
obtained ignoring the scale correlation: 

2

2

2

2

1

2

21

2

2

2

1

2

1

2

2

2

2

2

1

22

21

2

2

2

1

2

1

2

2

2

2

2

1

)(
1

1ˆ

)(
ˆ

f

f

xxx

k

xx
x

xx

xx
k





























If the two measurements differ, their  
squared difference divided by the sum of the individual  
variances plays a role in the denominator. In that case the LS fit “squeezes the scale”  
by an amount allowed by f in order to minimize the c2. 
This is due to the LS expression using only first derivatives of the covariance: 
the individual variances 1, 2 do not get rescaled when the normalization factor is lowered, 
but the points get closer.  
 
This may be seen as a shortcoming of the linear approximation of the covariance, but it 
might also be viewed as a careless definition of the covariance matrix itself instead! 



• In fact, let us try again. We had defined earlier the covariance matrix as 
 
 
 

• The expression above contains the estimates of the true value, not the true value 
itself. We have learned to beware of this earlier… What happens if we instead try 
using the following ? 
 
 

 The minimization of the resulting c2, 
 
 

  
 produces as result the weighted average  
 
 
• The same would be obtained by maximizing the likelihood 

 
 

 or even minimizing the c2 defined as  
 
 
 
 Note that the latter corresponds to “averaging first, dealing with the scale later”. 
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When do results outside bounds make 
sense ? 

• Let us now go back to the general case of taking the average of two correlated 
measurements, when the correlation terms are expressed in the general form we saw in 
slide 25: 
 
 

• The LS estimators provide the following result for the weighted average [Cowan 1998]: 
 
 

 whose (inverse) variance is 
 
 
 
 From the above we see that once we take a measurement of x of variance 1

2, a second 
measurement of the same quantity will reduce the variance of the average unless r1/2. 

 But what happens if r>1/2 ? In that case the weight w gets negative, and the average goes 
outside the “psychological” bound [x1,x2]. 

 
 The reason for this behaviour is that with a large positive correlation the two results are 

likely to lie on the same side of the true value! On which side they are predicted to be by the 
LS minimization depends on which result has the smallest variance. 
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How can that be ? 

 It seems a paradox, but it is not. Again, the reason why we cannot digest the 
fact that the best estimate of the true value m be outside of the range of the 
two measurements is our incapability of understanding intuitively the 
mechanism of large correlation between our measurements. 
 

• John: “I took a measurement, got x1. I now am going to take a second 
measurement x2 which has a larger variance than the first. Do you mean to 
say I will more likely get x2>x1 if m<x1, and x2<x1 if m>x1 ??” 

• Jane: “That is correct. Your second measurement ‘goes along’ with the first, 
because your experimental conditions made the two highly correlated and x1 
is more precise.” 

• John: “But that means my second measurement is utterly useless!” 
• Jane: “Wrong. It will in general reduce the combined variance. Except for the 

very special case of r1/,  the weighted average will converge to the true 
m. LS estimators are consistent !!”. 



Jane vs John, round 1 

Jane: “Now please tell me whether they are mostly on the same side (orange rectangles) 
or on different sides (pink rectangles) of the true value.” 
John: “Ah! Sure, all but one are on orange areas”. 
Jane: “That’s because their correlation makes them likely to “go along” with one another.”  
 

John: “Okay, so ?” 
Jane: “Please, would you pick a few points at 
random within the ellipse?”  
John: “Done. Now what ?” 

John: “I still can’t figure out how on  
earth the average of two numbers can be 
ouside of their range. It just fights with my 
common sense.” 
Jane: “You need to think in probabilistic 
terms. Look at this error ellipse: it is thin and 
tilted (high correlation, large difference in 
variances).” 
 



Round 2: a geometric construction 
 

 Jane: “And I can actually make it even easier for you. Take a two-dimensional plane, draw 
axes, draw the bisector: the latter represents the possible values of m. Now draw the error 
ellipse around a  point of the diagonal. Any point, we’ll move it later.” 

 John: “Done. Now what ?” 
  
 Jane: “Now enter your measurements x=a, y=b. That corresponds to picking a point P(a,b) in 

the plane. Suppose you got a>b: you are on the lower right triangle of the plane. To find the 
best estimate of m, move the ellipse by keeping its center along the diagonal, and try to scale 
it also, such that you intercept the measurement point P.” 

 John: “But there’s an infinity of ellipses that fulfil that requirement”. 
  
 Jane: “That’s correct. But we are only interested in the smallest ellipse! Its center will give us 

the best estimate of m, given (a,b), the ratio of their variances, and their correlation.” 
  
 John: “Oooh! Now I see it! It is bound to be outside of the interval!” 
  
 Jane: “Well, that is not true: it is outside of the interval only because the ellipse you have 

drawn is thin and its angle with the diagonal is significant. In general, the result depends on 
how correlated the measurements are (how thin is the ellipse) as well as on how different 
the variances are (how  big is the angle of its major axis with the diagonal). 
 



P(a,b) 

a x1 

When a large correlation 
exists between the measurements 
and the uncertainties differ, the best  
estimate of the unknown m may lie 
outside of the range of the two  
measurements [a,b] 

LS estimate of m 

Tangent in P to 
minimum ellipse is 
parallel to  
bisector 



Trivia – Try it at home 

 Here is a simple 

arrangement with 
which you can test 
whether or not a 
significant 
correlation 
between two 
measurements  
causes the effect 
we have been 
discussing. 

y 

d1 

d2 



 Which of the PDF (parton distribution 
functions!) models shown in the graph 
is a best fit to the data:  

 CTEQ4M (horizontal line at 0.0) or 
MRST (dotted curve) ? 
 

 You cannot tell by eye!!! 
 The presence of large correlations 

makes the normalization much less 
important than the shape. 

 
 p-value(c2 CTEQ4M)=1.1E-4,  
 p-value(c2 MRST) = 3.2E-3 :  
 The MRST fit has a 30 times higher p-

value than the CTEQ4M fit ! 
 
 Take-home lessons: 
  
 - Be careful with LS fits in the presence 

of large common systematics! 
 - Do not trust your eye when data 

points carry significant bin-to-bin 
correlations! 

When chi-by-eye fails ! 

Source: 1998 CDF measurement of the differential 
dijet mass cross section using 85/pb of Run I data, 
F. Abe et al., The CDF Collaboration,  
Phys. Rev. Lett. 77, 438 (1996) 



Drawing home a few lessons 

• If I managed to thoroughly confuse you, I have reached my 
goal! There are a number of lessons to take home from this: 
 
– Even the simplest problems can be easily mishandled if we do 

not pay a lot of attention… 
 
– Correlations may produce surprising results. The average of 

highly-correlated measurements is an especially dangerous case, 
because a small error in the covariance leads to large errors in 
the point estimate. 
 

– Statistics is hard! Pay attention to it if you want to get correct 
results ! 


