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From the experiment to the discovery 
q 5 main phases: 

§  Events Acquisition, online (High Level Trigger) 
§ Reconstruction 
§ MC Simulation 
§ Data analysis: event selection and results extraction 

q Quite distinct problems 
§  Efforts should be consider differently for each use cases 
§ Of course there are overlaps… 

q  Ideally we would like to have data analysis directly 
during the reconstruction (or inside the online part) 
§ Reduce the amount of data to collect and the time for 

analysis (a ringing bell when a good event is found) 
§ Dangerous: remove potential good data for discoveries 
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The goal 
q The goal of physics experiments is to provide results 

(descripted in papers) that can be compared to 
theory predictions 
§  All phases in an experiment are important 
§  First phases can be centralized (common experiment, 

common simulation, common reconstruction…) 
• Several experts involved, saving a lot of resources 

§  Last phases are very chaotic 
• Very easy to do “mistakes”  
• Every analysis wants the power to analyze data 

independently 
• “Competition” of several groups on a given 

measurement 
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Data analysis at a glance 
q We can distinguish two main categories: 

§ High precision measurements: we know the physics 
phenomena and we want to compare the theory 
prediction with respect to results from data 

• Large sample of data to reduce the statistical errors 
• Improve experiments and data analysis techniques to reduce 

systematic errors 
• Push theory and experiment to the limits 

§ Discovery measurement: find new phenomena 
• Few events are enough to claim a discovery, but in most cases 

there is a tiny probability (cross section) to produce them and there 
is a huge contamination from other (well-know) events 

• We don’t know where the new physics is, so in principle we want to 
collect and analyze everything! 

• Improve limits on the discoveries and hopefully move to precise 
measurements after the discovery 
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Looking for signal events 

q  “If your experiment needs statistics, you ought to 
have done a better experiment.” 

Ernest Rutherford 
 

q Crucial to have a good discrimination between 
interesting (signal) events and the rest (background) 
§ Data analysis techniques play a crucial role in this “war” 
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Discrimination 

q Targets (2 main areas) 
§  Events selection: set of cuts applied on discriminant 

variables 
§  Signal/Background discrimination and parameters 

estimations 
q Techniques 

§  Cuts Optimization (Bump Hunter), Fisher Discriminant, 
Neural Networks (NN), Boosted Decision Trees (BDT)…  

§ Maximum Likelihood (ML) fits 
q Complexity 

§  Simple 1D fit / Cut&Count analyses 
§ Multivariate analyses for signal/background 

discrimination 
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Common way to proceed (1) 

q Efficient trigger (online selection) to reduce 
background events 

q Reconstruction using framework (offline selection) 
for data and MC simulations 
§ Runs on GRID 
§  I/O bound (access to data) 
§ Keep the useful information for a more aggressive 

selection, usually producing data for several analysis 
q Further selection with more aggressive cuts 

§  Event selection well performed in parallel using PROOF 
(data parallelism) 

§  Local farm (Tier3) 
§ Keep a small fraction of the initial sample 
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Common way to proceed (2) 

q The last steps are analysis- and user-dependent 
§  In the first phase of the experiment it is reasonable to 

think that with small samples and (as usual for new 
experiments and in case of search for new phenomena) 
simple analysis will be used (events counting) 

• Reduce systematic errors estimations 

§  Efforts will be concentrated to have results in a 
reasonable time schedule 

§  Ideally you want to run on small systems at “home”: 
laptops and desktops 

§  Long internal review inside the collaboration before 
publishing the results 
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Common way to proceed (3) 

q  Use MC or data-driven techniques to understand the 
background events 
§  Tuning of the MC to data using standard “candles” events (well 

known physics events used as control sample) 
§  Understand the detector and the systematics 
§  After initial measurements, start the exploration of new “territory” 

• Use “golden mode” channel 
• Keep low systematics (statistical dominated) 
• 5 Gaussian standard deviations (sigmas) 

level to claim the discovery 
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Figure 3: Boosted decision tree discriminant (bdt) for both electron and muon decay channels in
the W-enriched control sample (top panel), with simulation normalized to data, also shown for
W + jets samples with doubled and halved renormalization and factorization scale (Q). Same
observable after the complete BDT selection (bottom panel), with signal scaled to the measured
cross section and all systematic uncertainties and backgrounds scaled to the medians of their
posterior distributions.

Single top analysis at CMS 	

(arXiv:1106.3052)	

3.5 sigmas	




Common way to proceed (4) 

q Reduce limits up to 5 sigmas to rule out a model 

 
§  Several approaches 

• frequentist or beyesian 
• Hopefully the measurement is model-independent 

q Hope to find the Higgs… 
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Software 

q  There is not a common framework for data analysis (like 
in reconstruction) for different analysts’ 
§  In general everybody wants the “power” to obtain the final results, 

i.e. his own version of data analysis code 
q  This means a “plethora” of programs 

§  Not always based on the same base-code (different languages, 
Matlab, different algorithms…) 

q  Advantage: possible to make comparisons to spot bugs 
out 

q  Disadvantage: “sometimes” all the versions are not well 
optimized 

q  Inside the collaborations there is a general agreement to 
use common software (based on ROOT) from the 
beginning 
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Combinations and Global fits 

q Combine measurements from different experiments 
§ Higgs combination for ATLAS + CMS & CDF + D0 

 
q Combine several measurements to test an entire 

theory 
§  EW model 
§  SUSY models 
§  CKM model 
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RooFit 
q  RooFit is commonly used in High Energy Physics 

experiments to define the likelihood functions (W. Verkerke 
and D. Kirkby) 
q  Inside ROOT. Details at http://root.cern.ch/drupal/content/roofit 
q  Mathematical concepts are represented as C++ objects 

q  On top of RooFit developed another package for advanced 
data analysis techniques, RooStats 
q  Limits and intervals on Higgs mass and New Physics effects 
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TMVA 

q  Toolkit for Multivariate Data Analysis with ROOT 
§  Details at http://tmva.sourceforge.net/ 

q  Several techniques, e.g. 
§  Function discriminant analysis (FDA) 
§  Artificial neural networks (three different MLP implementations) 
§  Boosted/Bagged decision trees 
§  Predictive learning via rule ensembles (RuleFit) 
§  Support Vector Machine (SVM) 

q  Working on parallelization  
of the package  
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Background rejection versus Signal efficiency

Figure 5: Example for the background rejection versus signal efficiency (“ROC curve”) obtained by cutting

on the classifier outputs for the events of the test sample.

• Please send questions and/or report problems to the tmva-users mailing list:

http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires

prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,

where the chosen methods are applied to the concrete classification or regression problem they have

been trained for. An overview of the code flow for these two phases as implemented in the examples

TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),

and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.

In the training phase, the communication of the user with the data sets and the MVA methods

is performed via a Factory object, created at the beginning of the program. The TMVA Factory

provides member functions to specify the training and test data sets, to register the discriminating

input (and – in case of regression – target) variables, and to book the multivariate methods. Sub-

sequently the Factory calls for training, testing and the evaluation of the booked MVA methods.

Specific result (“weight”) files are created after the training phase by each booked MVA method.

The application of training results to a data set with unknown sample composition (classification) /

target value (regression) is governed by the Reader object. During initialisation, the user registers



RooFit optimization and parallelization 
q  In the following slides I will focus on an R&D project 

we are doing for improvement the likelihood 
calculation in RooFit 
§ Biased from my experience in the Babar and Atlas 

experiments. However, data analysis is not our goal, so 
we don’t focus on any specific analysis 

• Strong collaboration with physics collaborators to have wide 
coverage of different analyses 

q  Our way to proceed: 
§  Understanding the current version of the algorithm 
§  Rewriting the algorithm so that we can improve it 

• Optimizations, vectorization, numerical accuracy 

§  Apply parallelization 
§  Porting the algorithm on accelerators (see tomorrow Yngve’s talk) 
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Likelihood-based techniques 

q  Data are a collection of independent events 
§  an event consists of the measurement of a set of variables 

(energies, masses, spatial and angular variables...) recorded in a 
brief span of time by the physics detectors 

q  Introducing the concept of probability P (= Probability 
Density Function, PDF) for a given event to be signal or 
background, we can combine this information for all 
events in the likelihood function 

q  Several data analysis techniques requires the evaluation 
of L  to discriminate signal versus background events 
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L =
N�

i=1

P(x̂i|θ̂) N number of events
x̂i set of variables for the event i
θ̂ set of parameters



Maximum Likelihood Fits 

q  It allows to estimate free parameters over a data sample, 
by minimizing the corresponding Negative Log-Likelihood 
(NLL) function (extended likelihood) 

 
q  The procedure of minimization can require several 

evaluation of the NLL 
§  Depending on the complexity of the function, the number of 

observables, the number of free parameters, and the number of 
events, the entire procedure can require long execution time 

§  Mandatory to speed-up the execution 
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NLL =
s�

j=1

nj −
N�

i=1



ln
s�

j=1

njPj(x̂i|θ̂j)





s species, i.e. signals and backgrounds 
nj number of events belonging to the species j 



Examples 

q  In most cases PDFs can be factorized as product of the n 
PDFs of each variable (i.e. case of uncorrelated variables) 
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Pj(x̂i|θ̂j) =
n�

v=1

Pv
j (x

v
i |θ̂j)

Gaussian
G(x|µ,σ)

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Parametric PDFs

8

G(x|µ, σ) (µ, σ)

G

x mu sigma

Many familiar PDFs are considered parametric
‣ eg. a Gaussian                  is parametrized by                    
‣ defines a family of distributions
‣ allows one to make inference about parameters

I will represent PDFs graphically as below (directed acyclic graph)
‣ every node is a real-valued function of the nodes below 



Examples 

q  In most cases PDFs can be factorized as product of the n 
PDFs of each variable (i.e. case of uncorrelated variables) 
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Pj(x̂i|θ̂j) =
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Combined Atlas & CMS Higgs analysis:  
12 variables 
50 free parameters 



MINUIT 
q  Numerical minimization of the NLL using MINUIT (F. James, 

Minuit, Function Minimization and Error Analysis, CERN long 
write-up D506, 1970) 

q  MINUIT uses the gradient of the function to find local minimum 
(MIGRAD), requiring 
q  The calculation of the gradient of the function for each free parameter, 

naively 

q  The calculation of the covariance matrix of the free parameters, i.e. 
evaluation of the second order derivatives 

q  The minimization is done in several steps moving in the 
Newton direction: each step requires the calculation of the 
gradient 
➪ Several calls to the NLL 

2 function calls 
per each 

parameter	
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Caveats 

q  We developed a new algorithm for the likelihood function 
evaluation to be added in RooFit 
§  We don’t replace the current RooFit algorithm, which is used for 

results checking 
§  Very chaotic situation: users can implement any kind of model 
§  No need to change the user code to use the new implementation, 

i.e. same interface (use a simple flag to switch to the new 
algorithm) 

q  The new algorithm is optimized to run on the CPU 
§  Used as reference for the GPU implementation: “fair” comparison 

q  All data in the calculation are in double precision floating 
point numbers 

q  Our target is to use commodity systems (e.g. laptops or 
desktops), easily accessible to data analysts 
§  Of course we tests also on server systems 
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1.  Read the values of the variables for each event 
2.  Make the calculation of PDFs for each event 

q  Each PDF has a common interface declared inside the class RooAbsPdf 
with a virtual method which defines the function 

q  Automatic calculation of the normalization integrals for each PDF 
q  Calculation of composite PDFs: sums, products, extendend PDFs 

3.  Loop on all events and make the calculation of the NLL 
§  A single loop for all events 

 
Parallel execution  
over the events  
(by fork), with final  
reduction of the  
contributions 

Likelihood Function evaluation in RooFit (1) 

var1 var2 … varn 

1 
2 
… 
N 

Variables	

Ev

en
ts
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Ex: P    = PA(ai) PB(bi) 
 
 
 

Likelihood Function evaluation in RooFit (2)	


a1 b1 

a2 b2 
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NLL = 0 



Ex: P    = PA(ai) PB(bi) 
 
 
 

Likelihood Function evaluation in RooFit (2)	


a1 b1 

a2 b2 

PA (a1) PB(b1) PA (a1)  PB(b1) NLL −= ln [PA(a1)  PB(b1)] 
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Ex: P    = PA(ai) PB(bi) 
 
 
 

Likelihood Function evaluation in RooFit (2)	


a1 b1 

a2 b2 PA (a2) PB(b2) PA (a2)  PB(b2) NLL −= ln [PA(a2)  PB(b2)] 
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Looping over all events and do the accumulation on NLL 
§  Data are stored in something like ROOT TTree (RooTreeDataStore) 

•  Very inefficient. At then our variables are simple float/double/int values 
•  It breaks any possible vectorization 
•  No thread safe, parallelization done with a fork, i.e. no shared memory 

§  In the C++ OO spirit, there is a common interface (RooAbsReal) 
and then virtual methods in all derivate classes 
•  Each PDF calls virtual methods to access parameters, the observables, the 

integral value for the normalization, calculation of the ln’s, … 
•  In case of composite PDFs (e.g. sums, products) it requires the call to virtual 

method of corresponding PDFs 
•  A lot of virtual function calls! 

§  If the PDF doesn’t change in the minimization, they are 
precalculated for all events and stored as a standard variable in 
the dataset 
•  Not efficient way for caching the values of the PDFs 
•  It doesn’t take in account caching of constant values of the PDF inside a 

single minimization iteration 

Likelihood Function evaluation in RooFit (3)	
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§  PDFs are considered as independent entities, i.e. a PDFs 
doesn’t know if it is called inside a minimization process, 
from a mother composite PDF, or with a direct call 
•  A PDF is not responsible to read the corresponding data 
•  The PDF provides a single result for a given values of the data 

and parameters 
•  In case of calculation which gives errors (e.g. negative 

probability), we get a warning message for the given values of the 
data and parameters 

§  Parallelization with a fork increases the memory footprint 
with the number of threads, but data are read-only! 
•  Still it is easy to implement and it gives good scalability 

§  At the end, we are doing the evaluation of functions 
(PDFs) over a vector of read-only data! 
•  Suitable for loop parallelism (note functions can be very complex!) 

Likelihood Function evaluation in RooFit (4)	
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New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory 
2.  For each PDF make the calculation on all events 

q  Corresponding array of results is produced for each PDF 
q  Evaluation of the function inside the local PDF 

3.  Combine the arrays of results (composite PDFs) 
4.  Loop over the final array of results to calculate NLL (final reduction) 
	

Ex: P    = PA(ai) PB(bi)	
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New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory 
2.  For each PDF make the calculation on all events 

q  Corresponding array of results is produced for each PDF 
q  Evaluation of the function inside the local PDF 

3.  Combine the arrays of results (composite PDFs) 
4.  Loop over the final array of results to calculate NLL (final reduction) 
	

Ex: P    = PA(ai) PB(bi)	


	

	

	

a1 b1 

a2 b2 

PA (a1) 

PA (a2) 
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New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory 
2.  For each PDF make the calculation on all events 

q  Corresponding array of results is produced for each PDF 
q  Evaluation of the function inside the local PDF 

3.  Combine the arrays of results (composite PDFs) 
4.  Loop over the final array of results to calculate NLL (final reduction) 
	

Ex: P    = PA(ai) PB(bi)	


	

	

	

a1 b1 

a2 b2 

PA (a1) 

PA (a2) 
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New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory 
2.  For each PDF make the calculation on all events 

q  Corresponding array of results is produced for each PDF 
q  Evaluation of the function inside the local PDF 

3.  Combine the arrays of results (composite PDFs) 
4.  Loop over the final array of results to calculate NLL (final reduction) 
	

Ex: P    = PA(ai) PB(bi)	


	

	

	

a1 b1 

a2 b2 

PA (a1) 

PA (a2) 

31 Alfio Lazzaro (alfio.lazzaro@cern.ch) 
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PB (b2) 
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PA (a2)PB (b2) 



New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory 
2.  For each PDF make the calculation on all events 

q  Corresponding array of results is produced for each PDF 
q  Evaluation of the function inside the local PDF 

3.  Combine the arrays of results (composite PDFs) 
4.  Loop over the final array of results to calculate NLL (final reduction) 
	

Ex: P    = PA(ai) PB(bi)	


	

	

	

a1 b1 

a2 b2 

PA (a1) 

PA (a2) 
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New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory 
2.  For each PDF make the calculation on all events 

q  Corresponding array of results is produced for each PDF 
q  Evaluation of the function inside the local PDF 

3.  Combine the arrays of results (composite PDFs) 
4.  Loop over the final array of results to calculate NLL (final reduction) 
	

Ex: P    = PA(ai) PB(bi)	


	

	

	

a1 b1 

a2 b2 

PA (a1) 

PA (a2) 
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PB (b1) 

PB (b2) 

PA (a1)PB (b1) 

PA (a2)PB (b2) 

ln [PA(a1) PB (b1)] 
ln [PA(a2) PB (b2)] 

Final reduction in NLL 



New algorithm and parallelization (2)	


•  Parallelization splitting calculation of each PDF over the events 
(data parallelism) and over the independent PDFs (task parallelism)	


•  Data are organized in vector, which are shared in memory	

•  Perfect for vectorization	


•  Call the PDFs once for all events	

•  Reduce dramatically the number of virtual function calls!	

•  Perfect for caching values over the iterations during the minimization	


•  Drawbacks 	

•  Require to handle arrays of temporary results: 1 value per each event 

and PDF	

•  Memory footprint increases with the number of events and number 

of PDFs, but not with the number of threads!	

•  Due to the vectorization, we cannot have warning messages for a 

given event, but only at the end of the loop for the calculation over 
all events	
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Implementation in RooFit 

q  First of all we added a new class to manage the data as 
vectors (based on map of std::vector’s, where the key is 
the name of the observable) 

q  We added a class to take in account the array of results 
(based on std::vector) 

q  The loop parallelism is implemented using OpenMP 
§  An OpenMP pragma loop for each loop used in the evaluation of the 

function 
q  Added new methods to the PDF interface 

§  Still the old interface is working 
q  Using Intel compiler for the auto-vectorization of the loops 

(using svml library by Intel) 
§  GNU compiler cannot auto-vectorize complex functions (like exp’s), 

unless you use intrinsics…  
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OpenMP parallelization 

q  Very easy parallelization with 
OpenMP	


q  Take benefit from the code 
optimizations 	

q  Inlining of the functions, no 

virtual functions	

q  Data organized in C arrays, 

perfect for vectorization	

q  Easily avoid race conditions, 

keep the parallel region 
limited inside each PDF	
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Parallel reduction 

q  The final reduction for the NLL evaluation done in parallel using 
block-wise algorithm 
§  Numerical approximation w.r.t. sequential reduction, which are 

number of threads dependent 
§  Minuit is very sensitive to these approximation 

• Of course differences are negligible, but still they can worry people (and they 
can be non deterministic) 

q  We implemented a parallel reduction based on double-double 
algorithm which reduces the approximations (Y.  He and C. H. Q. 
Ding, The Journal of Supercomputing, 18, 259–277, 2001; P. 
Kornerup at al., IEEE Transactions on Computers, 01 Feb. 2011) 
§  We need to switch off any compiler optimization inside the 

reduction, using pragmas 
q  Now the results are identical up to 10-6, no matter how many 

threads you are running 
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 Complex Model Test 

17 PDFs in total, 3 variables, 4 components, 35 parameters 
§  G: Gaussian 
§  AG: Asymmetric Gaussian 
§  BW: Breit-Wigner 
§  AR: Argus function 
§  P: Polynomial 

Note: all PDFs have analytical normalization integral, i.e. >98% 
of the sequential portion can be parallelized 

na[f1,aG1,a(x) + (1− f1,a)G2,a(x)]AG1,a(y)AG2,a(z)+

nbG1,b(x)BW1,b(y)G2,b(z)+

ncAR1,c(x)P1,c(y)P2,c(z)+

ndP1,d(x)G1,d(y)AG1,d(z)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 

40% of the 
execution time 
is spent in exp’s 

calculation	
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Model from B.  Aubert et. al., 	

Phys. Rev. Lett. 98, 031801, 2007	




Test on CPU in sequential 

q  Dual socket Intel Westmere-based system: CPU (L5640) @ 
2.27GHz (12 physical cores, 24 hardware threads in total), 
10x4096MB DDR3 memory @ 1333MHz 

q  Linux 64bit, Intel C++ compiler version 12.0.2 
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Table 1. Results of the comparison executing the fit on different number of events for the

three cases: original RooFit, OpenMP with one thread without vectorization, OpenMP with

one thread with vectorization. The time per evaluation is obtained dividing the wall-clock time

by the number of NLL evaluations required for the minimization, which is used in the RooFit

versus OpenMP comparison.

# Events 10,000 25,000 50,000 100,000

RooFit

# NLL evaluations 15810 14540 19041 12834

Time (s) 826.0 1889.0 5192.9 6778.9

Time per NLL evaluation (ms) 52.25 129.92 272.72 528.19

OpenMP (w/o vectorization)

# NLL evaluations 15237 17671 15761 11396

Time (s) 315.1 916.0 1642.6 2397.3

Time per NLL evaluation (ms) 20.68 51.84 104.22 210.36

w.r.t. RooFit 2.5x 2.5x 2.6x 2.5x

OpenMP (w/ vectorization)

# NLL evaluations 15304 17163 15331 12665

Time (s) 178.8 492.1 924.2 1536.9

Time per NLL evaluation (ms) 11.68 28.67 60.28 121.35

w.r.t. RooFit 4.5x 4.5x 4.4x 4.4x

include the time spent for the copy of the events from host memory to the device memory and

for the copy of the array of final results back to the host memory. From the hardware point of

view, we are comparing two systems which can be considered commodity systems: a single GPU,

whose main target is for computer gaming, versus a standard single socket desktop system with

4 cores. The results are shown in figure 2. We can see how the CUDA implementation behaves

better for high number of events, which is due to the specific ability of the GPU architectures

to take advantage of multiple threads.

5. Conclusion

In this paper we have described a different algorithm for the NLL evaluation in maximum

likelihood fits with respect to the algorithm used in the RooFit package. We implemented

this algorithm to run in parallel on CPU, using OpenMP, and GPU, using CUDA. In our

test the OpenMP implementation with a single thread is about 4.5x faster than the RooFit

implementation (table 1). Furthermore the OpenMP algorithm was executed in parallel, giving

a speed-up of about 10x with respect to a single thread execution in our test on 12 cores

(24 hardware threads) system (figure 1). The comparison between the OpenMP and CUDA

implementations are made using commodity systems, that can be considered, in terms of price

and power consumption, easily accessible to general data analysts. In this case, running the

OpenMP implementation in parallel (with 4 threads), we were able to reach a boost of 2.8x with

the CUDA implementation (figure 2).
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4.5x faster!	


Vectorization 
gives a 1.8x 
speed-up 

(SSE).	

Additional 
12% using 

AVX on Intel 
Sandy Bridge	




Test on CPU in parallel 
q  Dual socket Intel Westmere-based system: CPU @ 2.67GHz (12 

physical cores, 24 hardware threads in total), Turbo Mode ON, 
10x4096MB DDR3 memory @ 1333MHz 

q  Linux 64bit, Intel C++ compiler version 12.0.2 
q  100,000 events 
q  Data is shared, i.e. no  

 significant increase in the  
 memory footprint 
§  Possibility to use Hyper-threading  

 (about 20% improvement) 

q  Limited by the sequential part,  
 OpenMP overhead, and  
 memory access to data 
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Improvements 
•  Scalability is limited by accessing the array of results 

•  In particular the effect becomes important for PDFs with simple 
function, like polynomials and composite PDFs (add and prod) 

•  We do pinning of the threads to the physical cores, taking in 
account the NUMA effect 

•  However the performance depends on the cache memory 
available on the systems 
•  Testing on a 4 core i7 desktop system (8 MB L3 cache) we 

reach a factor ~2x with 8 threads (using SMT) 
•  We solve this problem with different techniques 

•  Merge the number of OpenMP parallel region and reuse the data 
(in particular for composite PDFs) 

•  Do block-splitting, i.e. do full evaluation for small sub-groups of 
events 

•  Doing this optimization we are able to reach 4.6x on the 4 core i7 
desktop system (8 threads with SMT) 
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Pseudo-experiments 

q Generating events from PDFs and repeat on them 
the analysis (frequentist approach) 

q  Implemented in RooFit using PROOF 
§ Not a parallel generator implemented (using pseudo-

generators TRandom3 with different seeds) 
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Conclusion (1) 
q Data analysis will be the major challenge in the next 

year at LHC 
§  Squeeze all possible physics results from data 
§  Analyses will increase their complexity in the next future 

• Intensive analysis period during the 2013-2014 shutdown 
q Other experiments will have the same complexity of 

LHC 
§  SuperB, Panda experiments… 

q  It is useful to converge on common efforts 
§  Common softwares 
§  Extending and improve existing software 

• Parallelization is mandatory in a lot of analysis 
§ Better selection during the online can help a lot the final 

analysis 
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Conclusion (2) 

•  In our work the OpenMP implementation required not so 
drastic changes in the existing RooFit code	

•  In any case we added our implementation, so that users 

can use the original implementation for reference	

•  Optimization gives a great speed-up: ~5x	

•  Note that our target is running at the user-level of small 

systems (laptops, desktops), i.e. with small number of 
CPU cores 

•  Very important to take under control numerical accuracy 
•  We would like to try single precision in case of PDF 

evaluation, moving to double precision for the final 
reduction 

•  Reduce memory footprint (half space for results) 
•  Gain a factor possible 2x from vectorization 
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