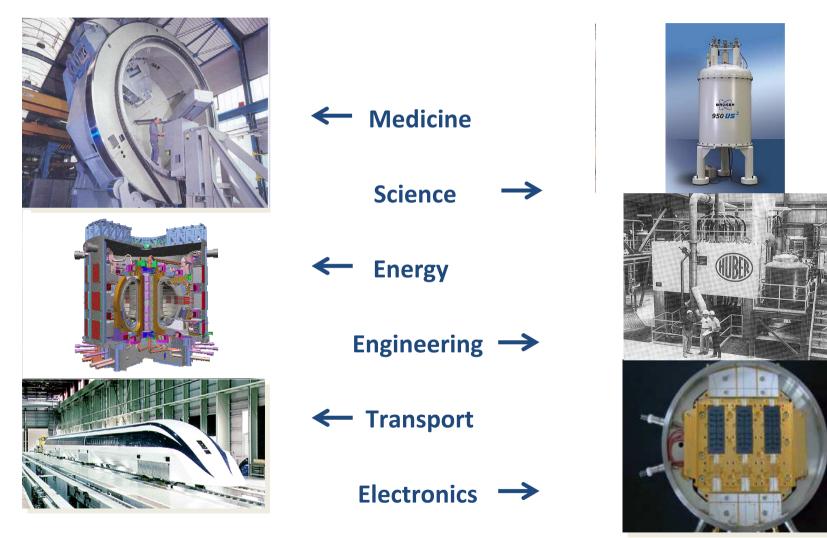


Academia – Industry matching event – Fostering collaborations in Superconductivity May 27th- 28th 2013, Madrid, Spain

Prof. Dr.-Ing. Mathias Noe

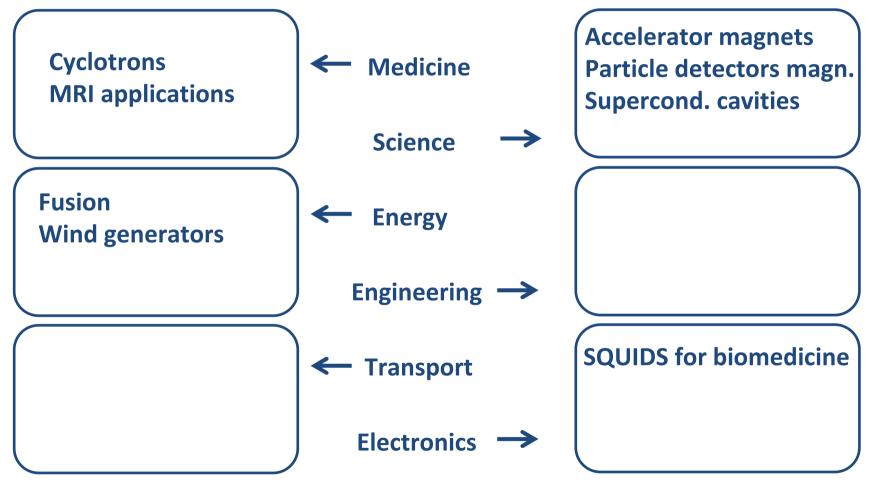
Institute for Technical Physics, Karlsruhe Institute of Technology, Germany

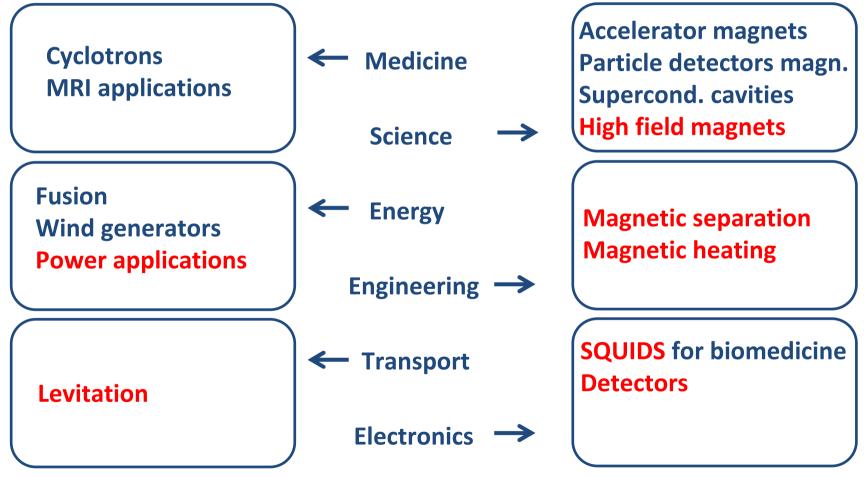
Acknowledgement


All colleagues working in this field

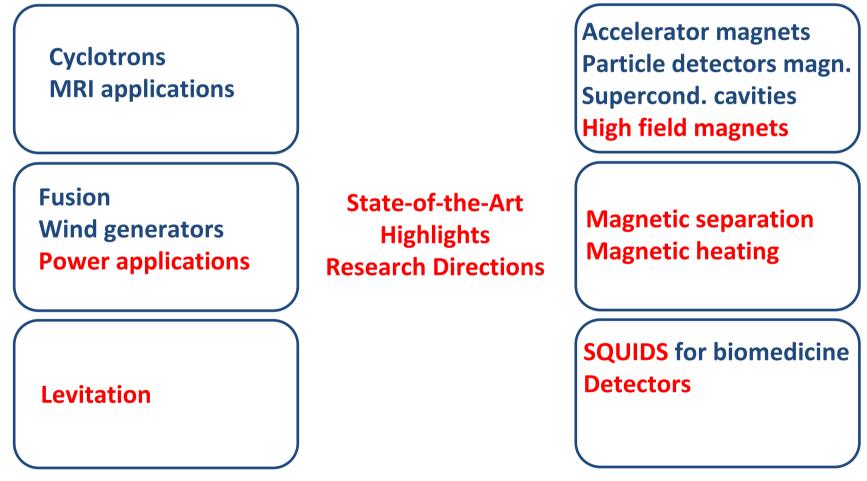
All members of CIGRE WG D1.38

All members of IEA Implementing Agreement for a Cooperative Programme for Assessing the Impacts of High-Temperature Superconductivity on the Electric Power Sector


And all members of ITEP at KIT


In blue – topics covered in this event

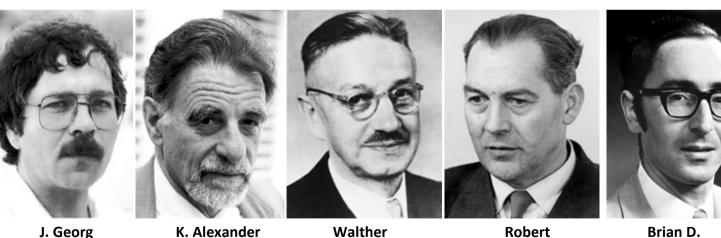
Academia – Industry matching event – Fostering collaborations in Superconductivity May 27th- 28th 2013, Madrid, Spain


M. Noe

In blue – topics covered in this event In red –topics covered by my presentation

In blue – topics covered in this event In red –topics covered by my presentation

Motivation What is the advantage of superconductivity?


Superconductivity offers

- Highest current densities, at zero DC resistance and at high magnetic fields
- peculiar magnetic behaviour with Meissner-Ochsenfeld effect and flux pinning

Josephson effect

Heike **Kamerlingh Onnes**

K. Alexander Müller

Bednorz

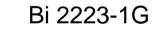
Walther Meissner

Robert Ochsenfeld

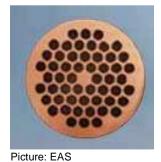
Brian D. Josephson

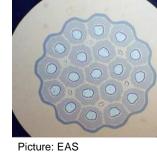
Academia – Industry matching event – Fostering collaborations in Superconductivity May 27th- 28th 2013, Madrid, Spain

Motivation

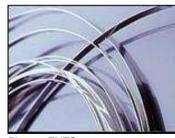

Technical Superconductors – Key towards Applications

Material	T _c [K]	$B_{c2}[T]$	Short name
NbTi	9.3	14.5	NbTi
Nb ₃ SN	18.3	27.9	Nb ₃ Sn
MgB ₂	~ 39 K	17	MgB ₂
$Bi_{2-x}Pb_{x}Sr_{2}Ca_{2}Cu_{3}O_{y}$ (y = 8 ÷ 10)	~ 110	> 100	Bi 2223 (1G)
$Bi_2Sr_2CaCu_2O_y$ (y = 8 ÷ 10)	~ 80	> 100	Bi 2212
REBa ₂ Cu ₃ O7 _{-x} (RE: Y, or other rare earth elements)	~ 90	> 100	Y 123 (2G)

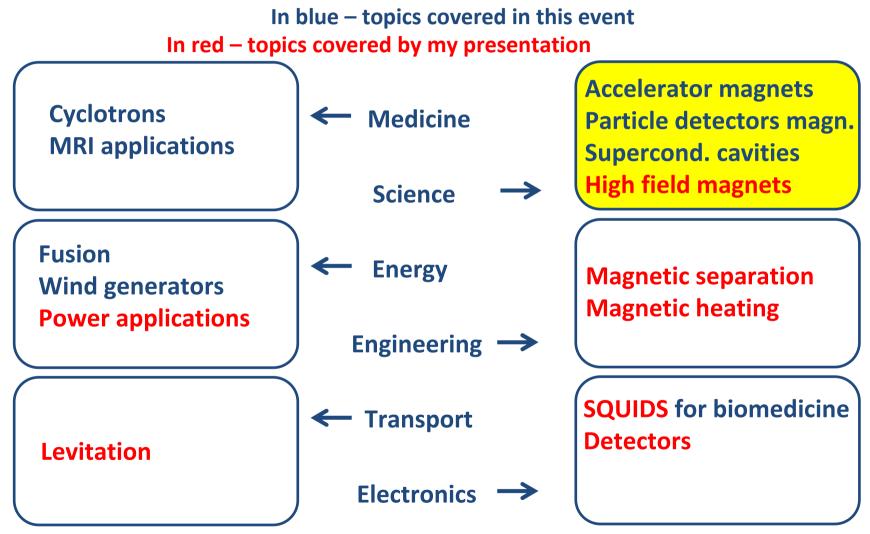

NbTi



 MgB_2

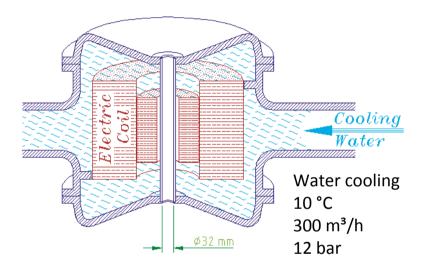


Picture: KIT



Picture: EHTS

Picture: AMSC



Academia – Industry matching event – Fostering collaborations in Superconductivity

Superconducting High Field Magnets Energy Efficiency

20 T Bitter-Magnet

Power Supply 6 MW (20 kA, 300 V) 20 T NTSL-Magnet (KIT)

Cooling Power < 15 kW

Superconductivity enables a considerable increase in energy efficiency.

185 mm

" Ø

́н

. 50

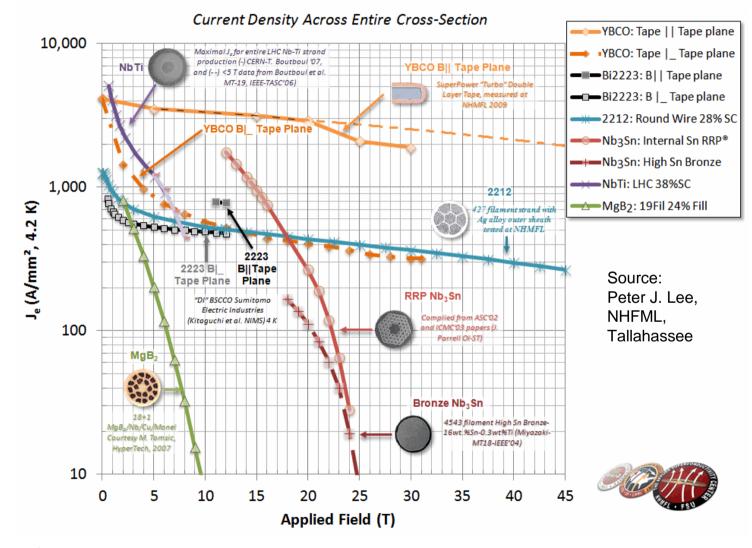
П

° B

Superconducting High Field Magnets State-of-the-Art

Hybrid magnets (LTS as background and resistive insert)

Location	Field (T)	Power (MW)	Bore (mm)
Tallahassee	45	30	32
Tsukuba	37	15	32
Sendai	31	7	32
Nijmegen	45	20	32
Grenoble	42	22.5	34
Hefei	40	20	32
Berlin	25	4	50



Source: Mark Bird, Progress in High Field Magnets, MT21, Hefei 2009

1) Bruker Press Release: BEST Reports Improved In-Field Critical Current Performance of its Second Generation High-Temperature Superconductor YBCO Tapes, June 28, 2010

Superconducting High Field Magnets Materials and their maximum Field applicability

Superconducting High Field Magnets State-of-the-Art of HTS Magnets

Year	HTS	B _A +B _{HTS} =B _{tot} (T)	J _{ave} (A/mm²)	Stress (MPa)*	Stress (MPa)**
2003		20+5=25	89	125	175
2008	BSCCO	20+ <mark>2</mark> =22	92	69	109
2008		31+1=31	80	47	89
2007	YBCO	17+7.8=26.8	259	215	382
2008	YBCO	31+ <mark>2.8</mark> =33.8	460	245	324
2009	YBCO	20+7.2=27.2	211	185	314
2009	YBCO	220+0.1=20.1	241	392	~ 611

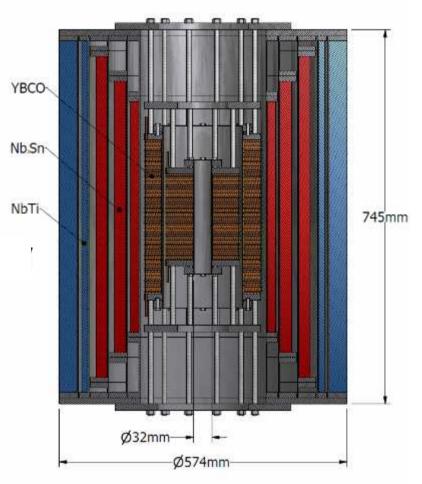
Picture: NHFML Tallahasseee

2.8 T in 31 T = 33.8 T SuperPower YBCO in NHMFL coil (OD=3,5 cm)

Many activities to develop HTS magnets and magnet inserts.

Source: Mark Bird, Progress in High Field Magnets, MT21, Hefei 2009

* $J_{ave} \cdot B_A \cdot R_{max}$ ** $J_F \cdot B_A \cdot R_{max}$


Superconducting High Field Magnets Examples of Further HTS Magnet Objectives

- NHFML 32 T all superconducting solenoid
- BNL 35 T hybrid solenoid (HTS and NbTi)
- KIT > 28 T HTS solenoid insert for NMR

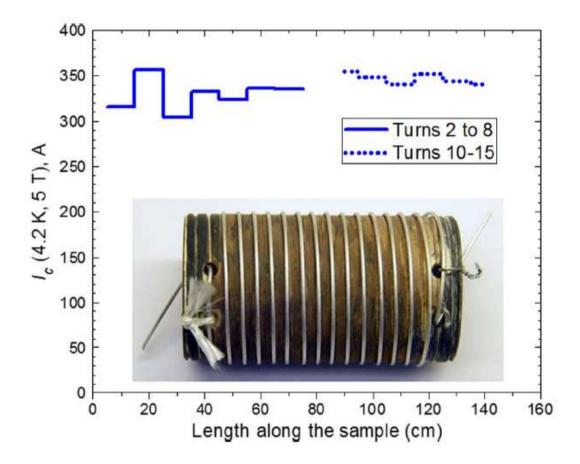
Total field	32 T
Field inner YBCO coils	17 T
Field outer LTS coils	15 T
Cold inner bore	32 mm
Field uniformity	5x10 ⁻⁴ 1cm DSV
Current	172 A
Inductance	619 H
Stored Energy	9.15 MJ

M. Noe

32 TESLA SUPERCONDUCTING MAGNET

Source: NHFML, Tallahassee, US

Superconducting High Field Magnets Application of 2G HTS Tapes in first commercial R&D Magnets


Central field at 4.2 K	20 T
Central field at 2 K	22 T
Max. op. current	200 A
Inductance	100 H
0 to 18 T	20 min
18 T to B _{max}	17 min
Central field homogeneity	0.1 % in 10 mm
Clear central bore	30 mm
Overall diameter	350 mm
Overall height	650 mm

Source: www.cryogenic.co.uk

Source: www.cryogenic.co.uk

Superconducting High Field Magnets Recent progress in Bi2112 by swaging

Jianyi Jiang, Hanping Miao, Yibing Huang, Seung Hong, Jeff A. Parrell, Christian Scheuerlein, Marco Di Michiel, Arup K. Ghosh, Ulf P. Trociewitz, Eric E. Hellstrom, and David C. Larbalestier

Reduction of Gas Bubbles and Improved Critical Current Density in Bi-2212 Round Wire by Swaging IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 23, NO. 3, JUNE 2013 6400206

Superconducting High Field Magnets Research Direction

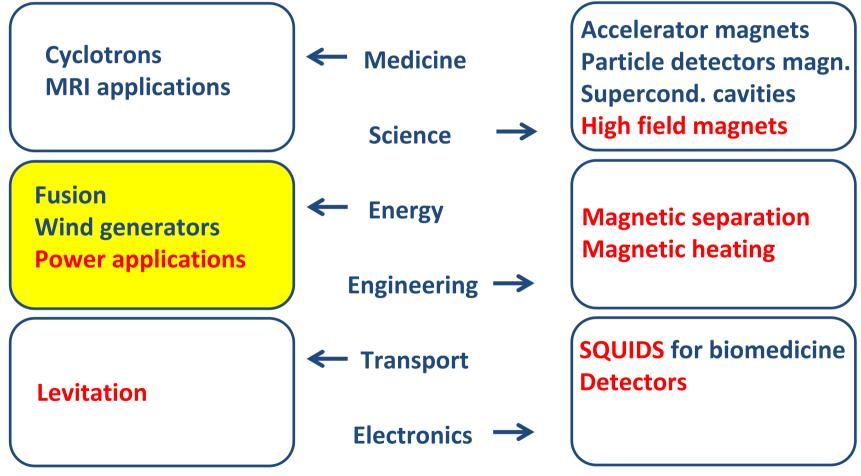
- Develop HTS inserts for high field magnets
 - Coil winding
 - Stability (electrical, mechanical)
 - Quench detection
 - Conductor concept
 - Homogeneity
 - Cryogenics
 - ...
- Increase magnetic fields (far) beyond 20 T in fully superconducting magnets
- Improve material properties at high fields

HTS will increase the magnetic field of superconducting magnets or will enable more compact magnets.

Superconducting High Field Magnets

Economic Feasibility of High Temperature Superconductors?

	4.2 K, 6 T	4.2 K, 10 T
NbTi wire 0.85 mm diameter Cu/Sc 1.3/1 Filaments 54	2.5 \$/kA m	20 \$/kA m
YBCO tape 4 mm tape width	125 \$/kA m ⊥ 33 \$/kA m	150 \$/kA m ⊥ 35 \$/kA m


Todays cost assumptions:

NbTi200 \$/kgYBCO30 \$/m

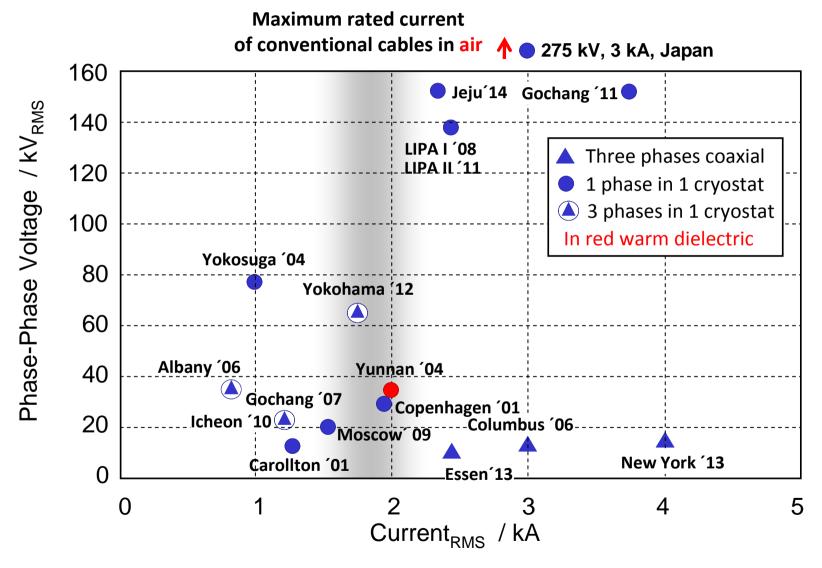
A replacement of LTS by HTS wire in permanent magnets seems technically feasible but will take place commercially only if HTS competes price performance ratio of LTS

In blue – topics covered in this event In red – topics covered by my presentation

Academia – Industry matching event – Fostering collaborations in Superconductivity

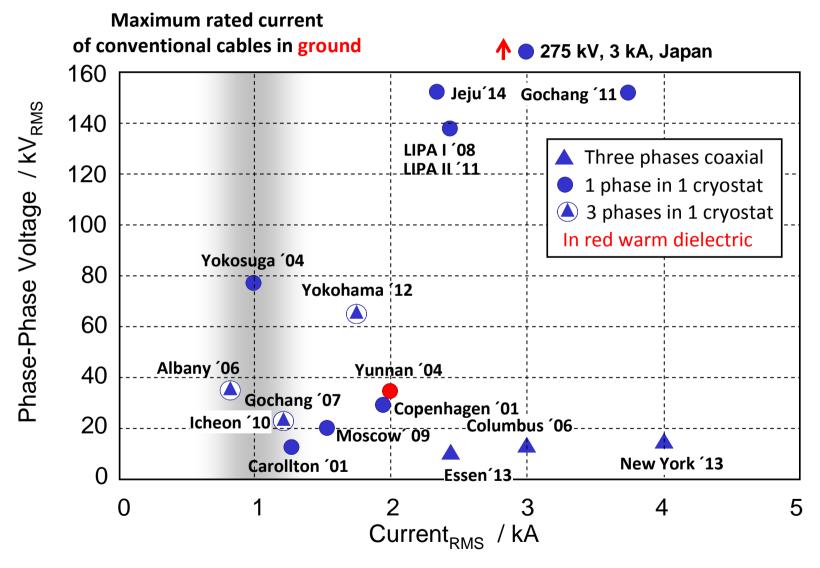
Superconducting AC Cables Benefits of Superconducting Cables

- Higher power or lower voltage at same or smaller diameter
- Simplified network structures by reducing the number of voltage levels
- Reduce number of substations especially in urban areas
- Simplified right of way because of small cable diameter (3 in 1 design)
- Economic benefits in comparison to high voltage equipment
- No electromagnetic outer fields
- Simplified admission procedure of medium voltage cables in comparison to high voltage cables


Superconducting AC Cables

State-of-the-Art of HTS AC Cables

Manufacturer	Place/Country/Year ¹⁾	Туре	Data	HTS
Innopower	Yunnan, CN, 2004	WD	35 kV, 2 kA, 33 m, 3-ph.	Bi 2223
Sumitomo	Albany, US, 2006	CD	34.5 kV, 800 A, 350 m, 3-ph.	Bi 2223
Ultera	Columbus, US, 2006	CD	13.2 kV, 3 kA, 200 m, 3-ph.	Bi 2223
Sumitomo	Gochang, KR, 2006	CD	22.9 kV, 1.25 kA, 100 m, 3-ph.	Bi 2223
LS Cable	Gochang, KR, 2007	CD	22.9 kV, 1.26 kA, 100 m, 3-ph.	Bi 2223
Sumitomo	Albany, US, 2007	CD	34.5 kV, 800 A, 30 m, 3-ph.	YBCO
Nexans	Hannover, D, 2007	CD	138 kV, 1.8 kA, 30 m, 1-ph.	YBCO
Nexans	Long Island, US, 2008	CD	138 kV, 1.8 kA, 600 m, 3-ph.	Bi 2223
Nexans	Spain, 2008	CD	10 kV, 1 kA, 30 m, 1-ph	YBCO
Sumitomo	Chubu U., JP, 2010	CD	10 kV, 3 kA DC, 20 m, 200 m	Bi 2223
VNIIKP	Moscow, RU, 2010	CD	20 kV, 1.4 kA, 200 m	Bi 2223
Nexans	Long Island, US, 2011	CD	138 kV, 2.4 kA, 600 m, 1-ph.	YBCO
LS Cable	Gochang, KR, 2011	CD	154 kV, 1 GVA, 100 m, 3-ph.	YBCO
LS Cable	Seoul, KR, 2011	CD	22.9 kV, 50 MVA, 400 m, 3-ph.	YBCO
Sumitomo	TEPCO, JP, 2012	CD	66 kV, 5 kA, 15 m	
Furukawa	TEPCO, JP, 2012	CD	275 kV, 3 kA, 30 m	Bi 2223
Sumitomo	Yokohama, JP, 2012	CD	66 kV, 200 MVA, 240 m, 3-ph.	Bi 2223
Ultera	New York, US, 2015	CD	13.8 kV, 4 kA, 170 m, 3-ph.	YBCO
Nexans	Essen, Germany, 2013	CD	10 kV, 40 MVA, 1000 m, 3 ph.	Bi 2223
LS Cable	Jeju Island, Korea, 2014	CD	154 kV, 2.25 kA, 500 m, 3 ph.	YBCO



Superconducting AC Cables State-of-the-Art of HTS AC Cable Field Tests

Superconducting AC Cables State-of-the-Art of HTS AC Cable Field Tests

Superconducting AC Cables State-of-the-Art

Columbus

LIPA

Gochang

13.2 kV, 3 kA, 200 m Triaxial[™] Design BSCCO 2223 Energized 2006 High reliability

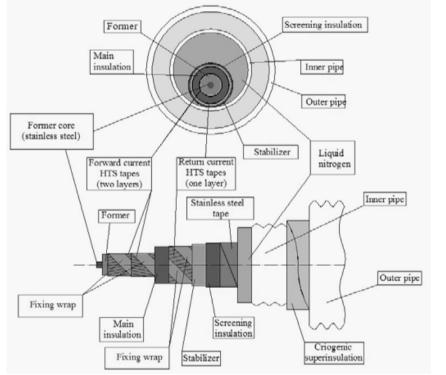
Figure: Ultera 138 kV, 2.4 kA, 600 m Single coaxial design BSCCO 2223 Energized 2008

Figure: Nexans Figure: LS Cable

LS Cable 22.9 kV, 50 MVA, 100 m BSCCO 2223 Energized 2007 500 m field test with YBCO in 2011

Academia – Industry matching event – Fostering collaborations in Superconductivity May 27th- 28th 2013, Madrid, Spain

24

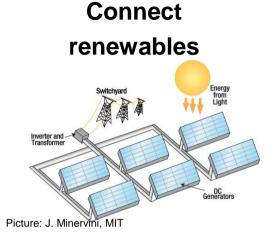

Superconducting DC Cables State-of-the-Art

DC Cable in Japan

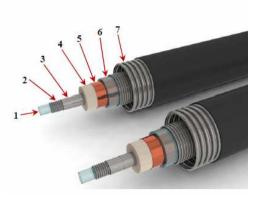
Chubu University 10 kV, 1.2 kA, 200 m Energized 2010

DC Cable in Russia

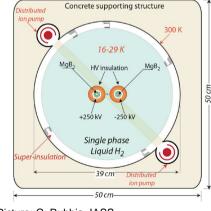
Customer: General Grid Company 20 kV, 2.5 kA, 2500 m First full scale sample in 2013 Cable laying in 2015 Experimental operation in 2016 V.E Sytnikov, et. al. "HTS DC cable line project: on-going activities in Russia", IEEE/CSC & ESAS European Superconductivity News Forum (ESNF) No. 23 January 2013


Superconducting DC Cables Applications

Industry high current lines

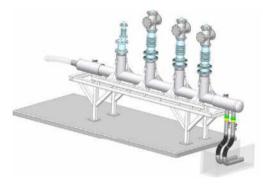


Picture: Vision Electric


Grounding of HVDC Lines

Larger power, long distance transmission

Picture: Nexans


Picture: C. Rubbia, IASS

Supply data centers

Picture: J. Minervini, MIT

Degaussing of ships

Picture: B. Fitzpatrick, HTS Peerreview2010

Superconducting Cables Research Direction

- Lower cost and higher performance of HTS material
- Improved reliability and availability of the cooling system
- Improved thermal insulation at reduced cost
- Work on standards
 - CIGRE Technical brochure available in 2013
- Demonstrate reliability and availability in long-term field installations

Superconducting cables are very close to commercialization.

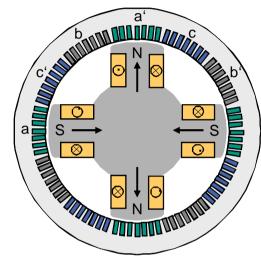
Superconducting Rotating Machines

Benefits

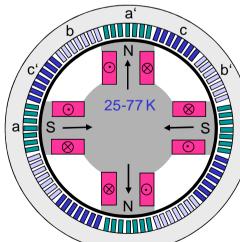
Smaller volume and weight

- Half the weight and volume
- Two times higher power density

Less resources


- Higher efficiency
- Less material

Improved operation parameters


- Lower voltage drop (x_d~ 0.2-0.3 p.u.)
- Higher stability
- Higher torque and dynamics
- Higher ratio of breakdown torque to nominal torque
- More reactive power

Enables new drive and generator systems

Conventional synchronous machine

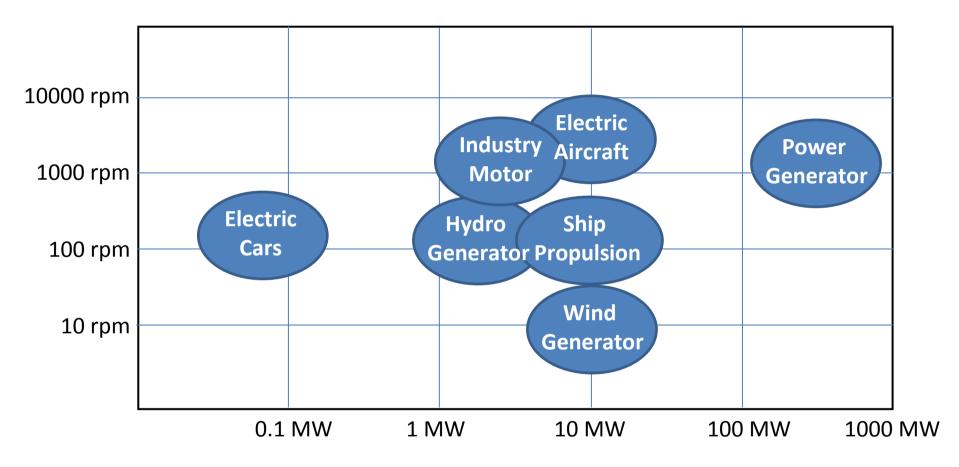
Superconducting synchronous machine

$$B = 2 T$$

$$A_{1} = 2 p.u.$$

$$P = 4 p.u.$$

$$Losses$$


$$P_{Cu,stat} = 2 p.u.$$

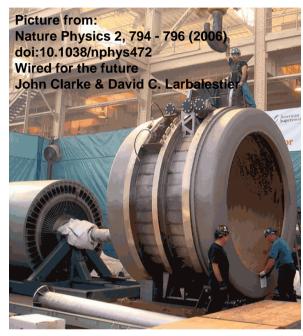
$$P_{Cu,rot} = 0 p.u. + P_{Cool}$$

$$P_{Fe} = 0.6 p.u.$$

Superconducting Rotating Machines For which Application?

There are many potential applications for HTS rotating machines that differ very much in rating, torque and speed.

Superconducting Rotating Machines


State-of-the-Art of large scale Motors and Generators

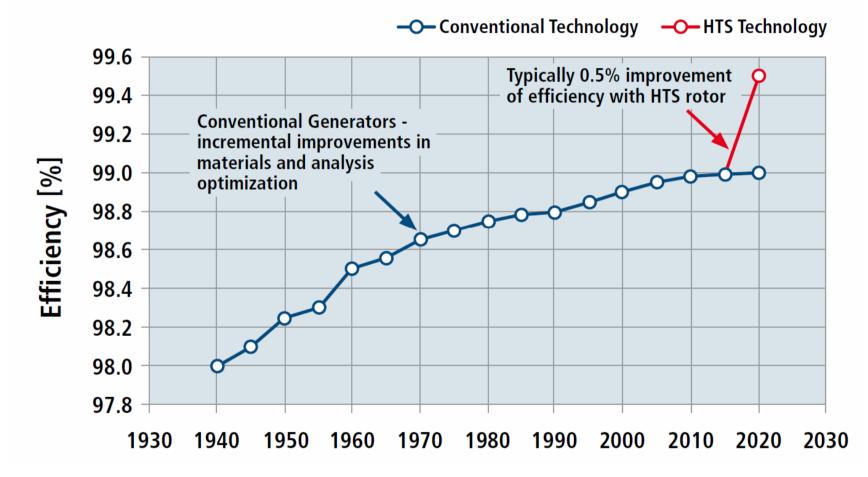
Manufacturer / Country	Machine	Timeline
AMSC (US)	5 MW demo-motor	2004
	8 MVA, 12 MVA synchronous condenser	2005/2006 (Field test)
	40 MVA generator design study	2006
	36 MW ship propulsion motor	2008
	8 MW wind generator design study	2010
GE (US)	100 MVA utility generator	2006 (discontinued)
	5 MVA homopolar induction motor	2008
LEI (US)	5 MVA high speed generator	2006
Reliance Electric (US)	10.5 MVA generator design study	2008
Kawasaki (JP)	1 MW ship propulsion	200?
IHI Marine, SEI (JP)	365 kW ship propulsion motor	2007
	2.5MW ship propulsion motor	2010
Doosan, KERI (Korea)	1 MVA demo-generator	2007
	5 MW motor ship propulsion	2011
Siemens (Germany)	4 MVA industrial generator	2008 (Field test)
	4 MW ship propulsion motor	2010
Converteam (UK)	1.25 MVA hydro-generator	2010
	500 kW demo-generator	2008
	8 MW wind generator design study	2010
Tecnalia /Acciona (Spain)	500 kW wind generator demonstrator	2016

Superconducting Rotating Machines State-of-the-Art

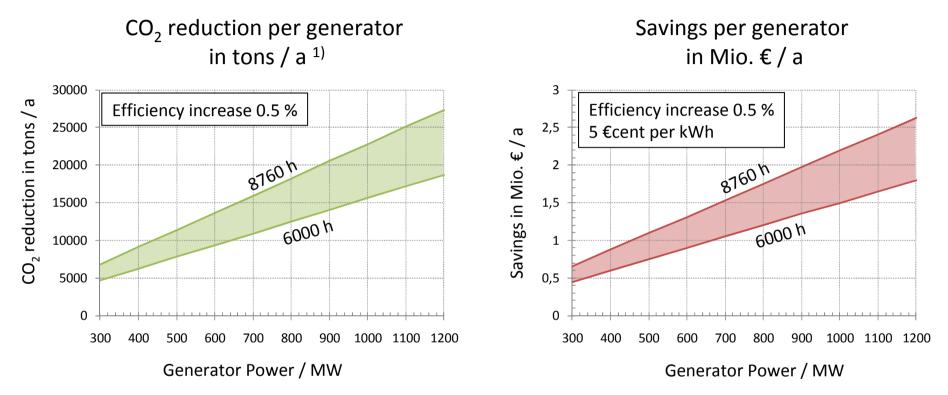
Ship Propulsion

EU "Hydrogenie" Hydrogenerator

AMSC 36.5 MVA, 6 kV 120 rpm 8 poles, 75 tons Efficiency > 97 % Dimensions: 3,4 m x 4,6 m x 4,1 m


GE/(Converteam) 1.790 MW, 5.25 kV 214 rpm, 77.3 kNm 28 poles, 32.7 tons 4.7 m x 5.2 m x 3.5 m Test in 2012 Ship Propulsion

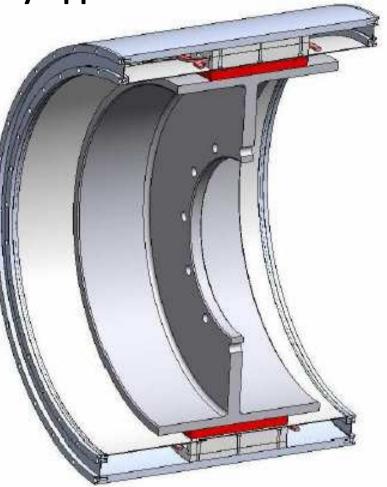
Siemens 4 MW, 3.1 kV 120 rpm, 320 kNm 37 tons 50 km HTS Test in 2010


Superconducting Rotating Machines Energy Efficiency of HTS Power Generators

Source: High-Temperature Superconductivity for Power Engineering, Materials and Applications, Accompanying Book to the Conference ZIEHL II, Future and Innovation of Power Engineering with High-Temperature-Superconductors, 16-17 March 2010, Bonn, Germany

Superconducting Rotating Machines Energy Efficiency of HTS Power Generators

With an increase in efficiency of 0.5 % a considerable cost saving can be expected.


1) 1 kWh=520 g CO₂ (actual German Energy Mix)

Superconducting Rotating Machines HTS High Torque Machines for Industry Applications

Data

- Power 156 kW
- Speed 57 rpm
- Torque 26000 Nm
- Efficiency 99.6 %
- Dynamic > 10000 rpm/s
- YBCO length 4 km, 4mm width
- Superconducting stator
- Permanent magnets in rotor

High dynamics and force density with HTS machines

Superconducting Rotating Machines Research Directions

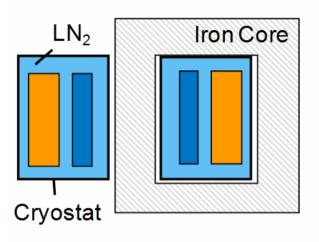
- Higher performance at lower cost
- Reliable and robust winding concepts
- Efficient and adaptable cooling
- Long-term demonstration in real application (no longer in test labs)
- Many applications
 - Ship propulsion
 - Wind generators
 - Power generators
 - High Torque machines
 -

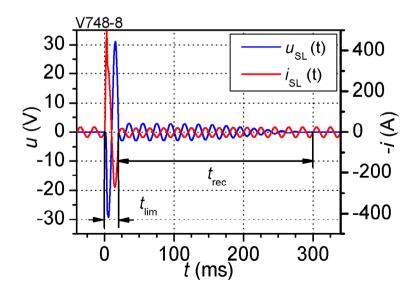
It can be expected, that within the next decade first commercial applications will be in the market. ¹⁾

1) "Status of Development and Field Test Experience with High-Temperature Superconducting Power Equipment, Working Group D1.15, June 2010

Superconducting Transformer Benefit of Superconducting Transformers

Manufacturing and transport


• Compact and lightweight (~50 % Reduction)

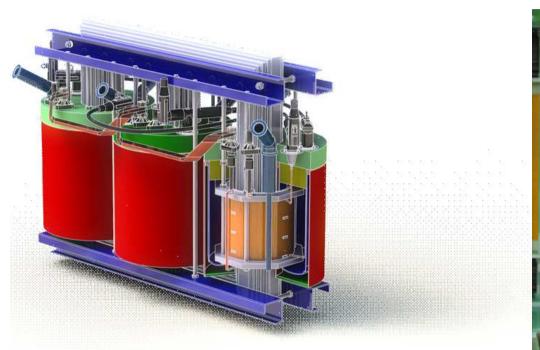

Environment and Marketing

- Energy savings (~50 % Reduction)
- Ressource savings
- Inflammable (no oil)

Operation

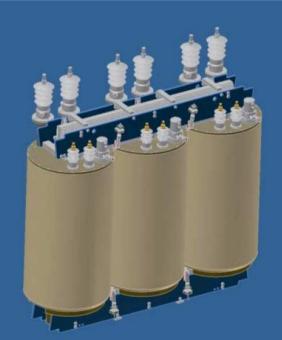
- Low short-circuit impedance
 - Higher stability
 - Less voltage drops
 - Less reactive power
- Active current limitation
 - Protection of devices
 - Reduction of investment

Superconducting Transformers

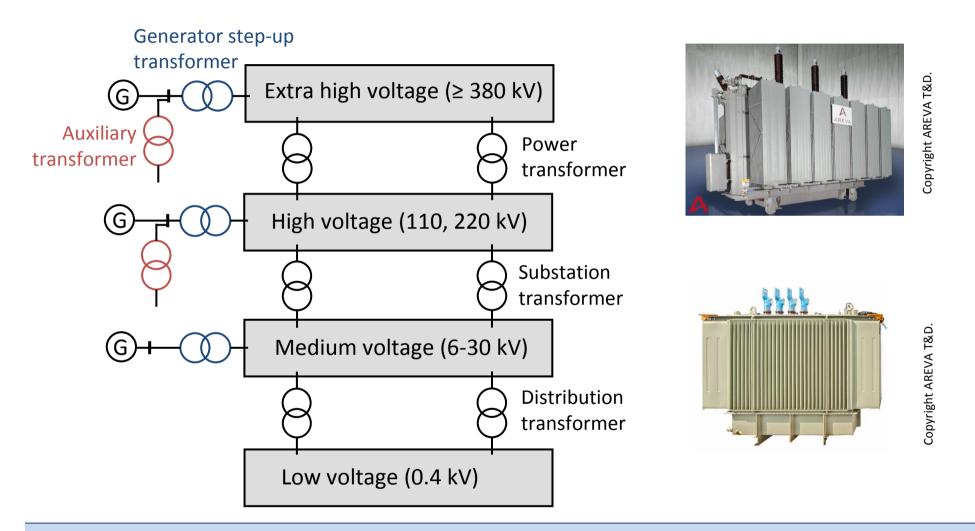

State-of-the-Art

Country	Inst.	Application	Data	Phase	Year	HTS
Switzerland	ABB	Distribution	630 kVA/18,42 kV/420 V	3 Dyn11	1996	Bi 2223
Japan	Fuji Electric Kyushu Uni	Demonstrator	500 kVA/6,6 kV/3,3 kV	1	1998	Bi 2223
Germany	Siemens	Demonstrator	100 kVA/5,5 kV/1,1 kV	1	1999	Bi 2223
USA	Waukesha	Demonstrator	1 MVA/13,8 kV/6,9 kV	1		Bi 2223
USA	Waukesha	Demonstrator	5 MVA/24,9 kV/4,2 kV	3 Dy		Bi 2223
Japan	Fuji Electric U Kyushu	Demonstrator	1 MVA/22 kV/6,9 kV	1	< 2001	Bi 2223
Germany	Siemens	Railway	1 MVA/25 kV/1,4 kV	1	2001	Bi 2223
EU	CNRS	Demonstrator	41 kVA/2050 V/410 V	1	2003	P-YBCO S- Bi 2223
Korea	U Seoul	Demonstrator	1 MVA/22,9 kV/6,6 kV	1	2004	Bi 2223
Japan	U Nagoya	Demonstrator	2 MVA/22 kV/6,6 kV	1	2009	P-Bi 2223 S-YBCO
Germany	KIT	Demonstrator	1 MVA, 20 kV	1	2015	P-Cu/S-YBCO
USA	Waukesha	Prototype	28 MVA/69 kV	3	2013	YBCO
Japan	Kyushu	Demonstrator	2 MVA	1	2011	YBCO
Australia	Callaghan Innovation	Demonstrator	1 MVA	3	2013	YBCO

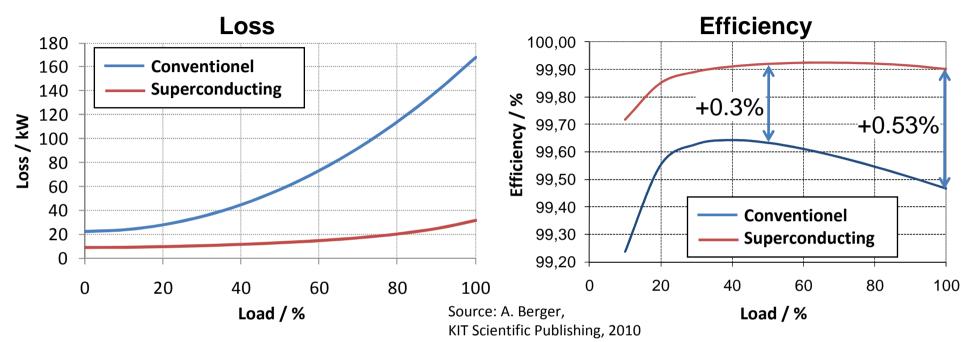
Active current limitation


Superconducting Transformers State-of-the-Art of Current Limiting Transformers

versity


Waukesha/SuperPower

1 MVA Demonstrator 11 kV/415 V Primary YBCO Secondary YBCO Roebel cond. Test in 2013 2 MVA Demonstrator 22kV/6.6 kV Primary Bi 2223 tapes Secondary YBCO tapes Successful test in 2009 28 MVA Prototype 69 kV Primary and secondary with YBCO tapes Test planned in 2013


Superconducting Transformers Applications

In general electricity passes 4-5 transformers from generation to load !

Superconducting Transformers Energy Efficiency (Example 31,5 MVA Transformer)

Power Transformers in Europe

Туре	Number	Capacity GVA
380 kV/220kV	689	311,8
220 kV/< 220 kV	2612	336,6
380 kV/< 220 kV	791	215,6

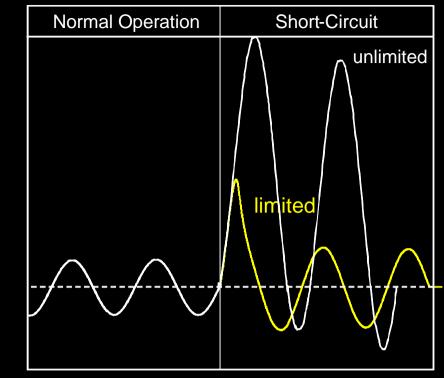
- In 2007 the world electricity generation was 19,771 TWh¹⁾.
- The total power loss in Europe is appr. 6.5 %.
- Appr. 40 % of the loss is caused in transformers.

From entsoe, Statistical Yearbook 2008

1) IEA key world energy statistics 2009

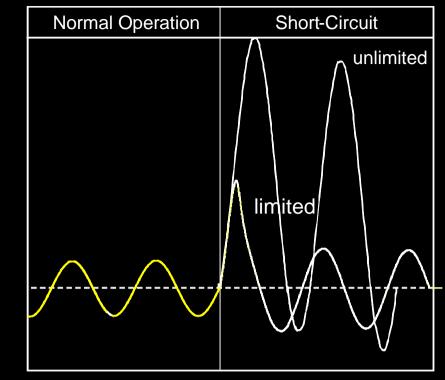
Superconducting Transformers

Research Directions


- Develop first large scale demonstrators and prototypes
- Develop wire concepts with reduced AC loss, stability and increased field performance
- Include current limitation (to compensate higher investment cost)
- Develop reliable cryogenic high voltage insulation concepts

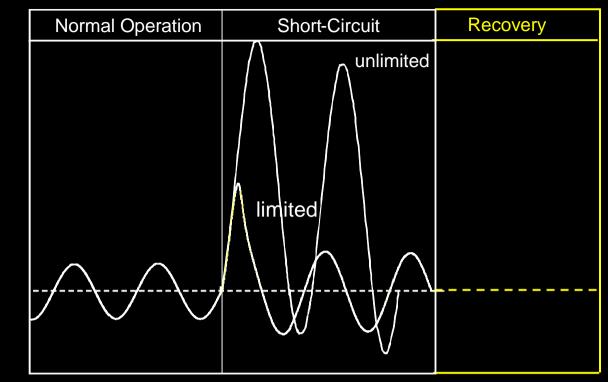
Superconducting transformers need further demonstrator and prototype development.

Superconducting Fault Current Limiters



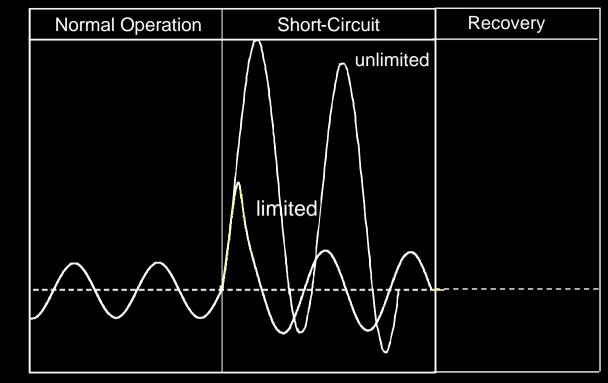
Time

Ideal Fault Current Limiter


- Fast short-circuit limitation
- No or small impedance at normal operation
- Fast and automatic recovery
- Fail safe
- Applicable at high voltages
- Cost effective

Time

Ideal Fault Current Limiter


- Fast short-circuit limitation
- No or small impedance at normal operation
- Fast and automatic recovery
- Fail safe
- Applicable at high voltages
- Cost effective

Time

Ideal Fault Current Limiter

- Fast short-circuit limitation
- No or small impedance at normal operation
- Fast and automatic recovery
- Fail safe
- Applicable at high voltages
- Cost effective

Time

Ideal Fault Current Limiter SCFCL

- Fast short-circuit limitation
- No or small impedance at normal operation

 \checkmark

- Fast and automatic recovery
- Fail safe
- Applicable at high voltages
- Cost effective

Superconducting Fault Current Limiters Economic Benefits

Delay improvement of components and upgrade power systems

e.g. connect new generation and do not increase short-circuit currents e.g. couple busbars to increase renewable generation and keep voltage bandwiths

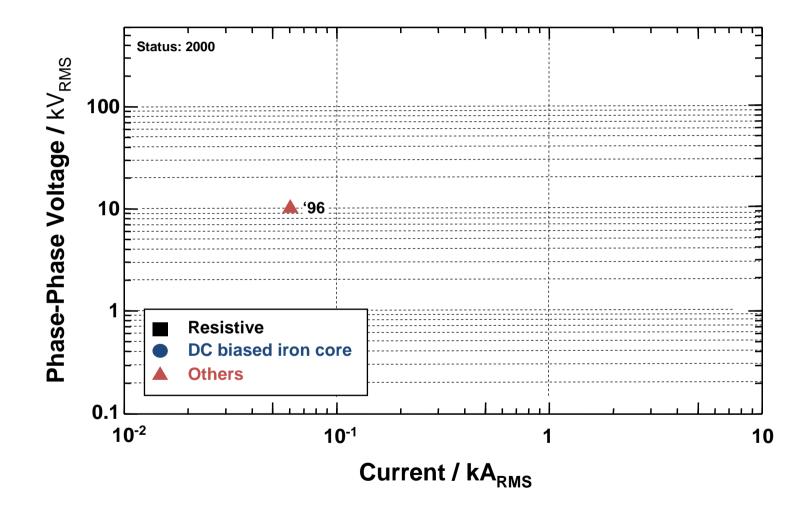
Lower dimensioning of components, substations and power systems

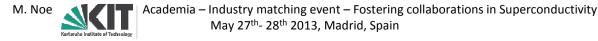
e.g. FCL in power system auxiliary

Avoid purchase of power system equipment

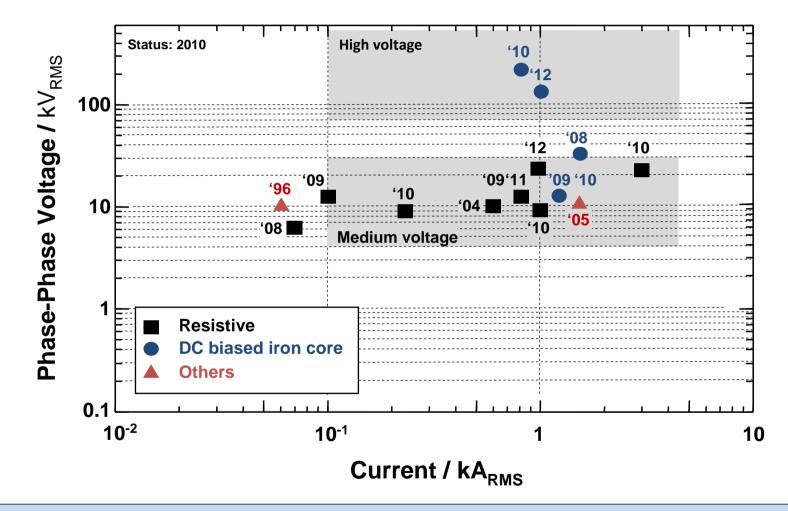
e.g. avoid redundant feeders by coupling power systems

Increase availibity and reliability


e.g. by coupling power systems


Reduce losses and CO₂ emissions

e.g. equal load distribution with parallel transformers



Superconducting Fault Current Limiters Successful SCFCL <u>Field Tests</u> until 2000

Superconducting Fault Current Limiters Successful and planned SCFCL <u>Field Tests</u> - Status by 2010

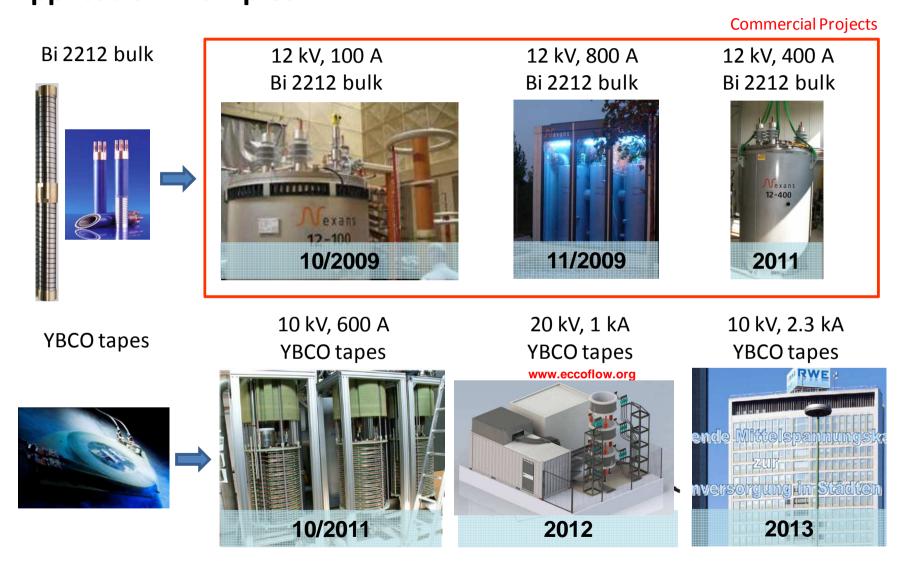
A considerable number of SCFCLs field tests have been performed within the last years.

Superconducting Fault Current Limiters State-of-the-Art

Nexans SuperConductors

Innopower

KEPRI

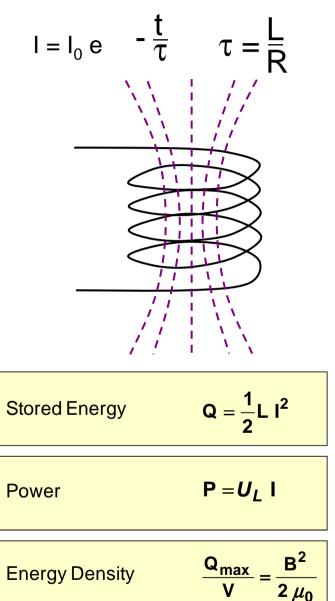

Courtesy: Nexans SuperConductors

Resistive Type 12 kV, 800 A, 120 ms YBCO material Power system auxiliary Energized 2011

DC Biased Iron Core Type **220 kV, 800 A** Bi 2223 tapes Substation Energized 2012 Hybrid type 22.9 kV, 3 kA YBCO tapes Substation Energized 2011

Superconducting Fault Current Limiters Application Examples

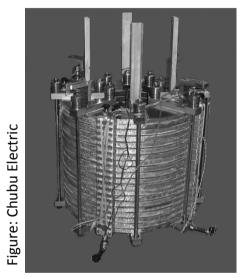
Superconducting Fault Current Limiters Research Directions


- Develop compact and inexpensive medium voltage SCFCLs
- Develop high voltage SCFCL demonstrators and prototypes
- Demonstrate and improve reliability with long term tests
- Develop tests standards
 - IEEE test guide for FCLs available soon
- Show value proposition and "educate costumer"

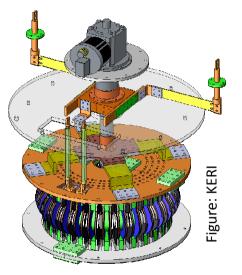
SCFCLs are very close to commercialisation.

Superconducting Magnetic Energy Storage Benefits

- Short reaction time (ms)
- Fast charge and discharge
- 0-100 % charging possible
- Independent supply of active and reactive power
- High efficiency
- No degradation
- Environmentally friendly

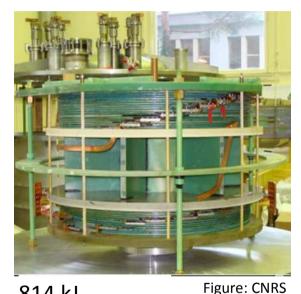

Superconducting Magnetic Energy Storage State-of-the-Art

Lead Institution	Country	Year	Data	Super- conductor	Application
КІТ	D	1997	320 kVA, 203 kJ	NbTi	Flicker compensation
AMSC	USA		2 MW, 2,6 MJ	NbTi	Grid stability
KIT	D	2004	25 MW, 237 kJ	NbTi	Power modulator
Chubu	J	2004	5 MVA, 5 MJ	NbTi	Voltage stability
Chubu	J	2004	1 MVA, 1 MJ	Bi 2212	Voltage stability
KERI	Korea	2005	750 kVA, 3 MJ	NbTi	Power quality
Ansaldo	I	2005	1 MVA, 1 MJ	NbTi	Voltage stability
Chubu	J	2007	10 MVA, 19 MJ	NbTi	Load compensation
CAS	China	2007	0,5 MVA, 1 MJ	Bi 2223	-
KERI	Korea	2007	600 kJ	Bi 2223	Power-, Voltage quality
CNRS	F	2008	800 kJ	Bi 2212	Military application
KERI	Korea	2011	2.5 MJ	YBCO	Power quality
BNL	USA	2013	3 MJ	YBCO	Grid storage



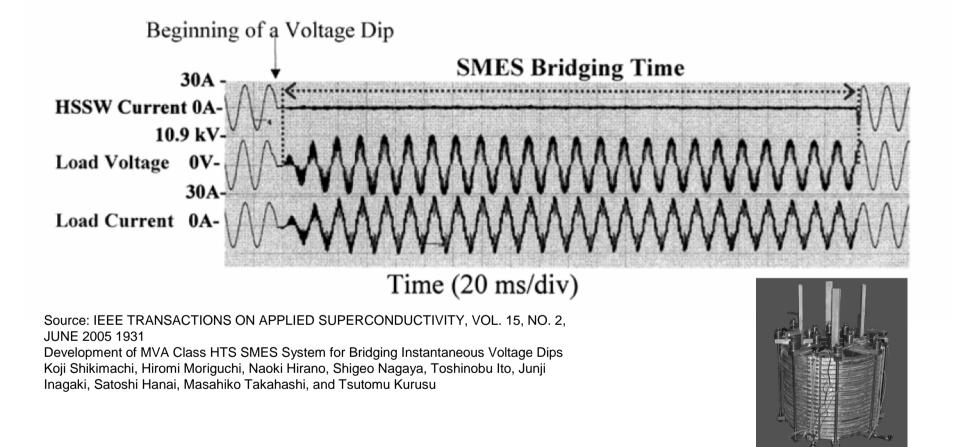
Superconducting Magnetic Energy Storage State-of-the-Art of HTS SMES Development

Chubu, Japan Bridging voltage dips



1 MJ , 1 MW Bi 2212 tape 500 A, 5 K conduction cooled Voltage: 2.5 kV KERI, Korea Power quality

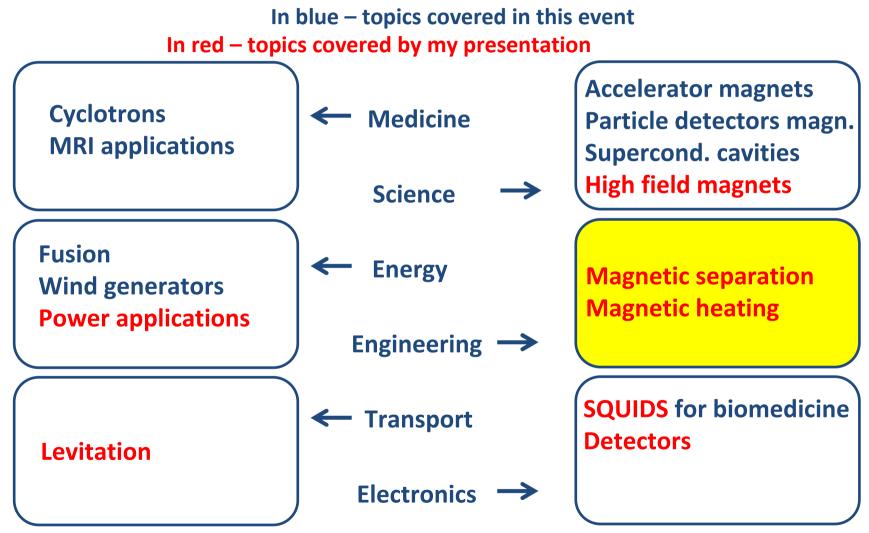
2.5 MJ
YBCO tape, 22 km
550 A
20 K conduction cooled
B_{maxll} 6.24 T
Test in 2011


CNRS, France Military application

814 kJ
Bi 2212 tape
315 A
20 K conduction cooled
Diameter : 300/814 mm
Height: 222 mm

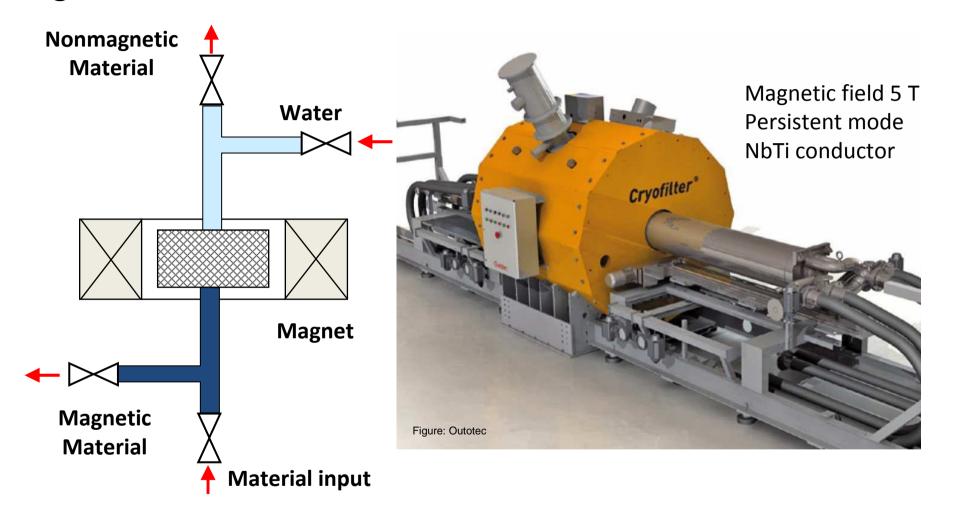
Superconducting Magnetic Energy Storage Test Experience of HTS SMES for bridging instantanous voltage dips

SMES have demonstrated their technical feasibility many times.


Superconducting Magnetic Energy Storage Research Direction

- Higher field performance at lower cost
- Reduction of AC loss
- Multistrand wires and tapes
- Develop modular SMES systems and hybrid SMES systems

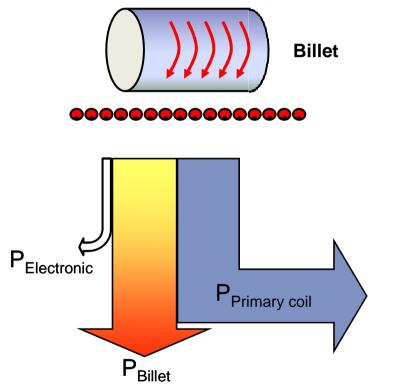
SMES needs significant cost reduction.



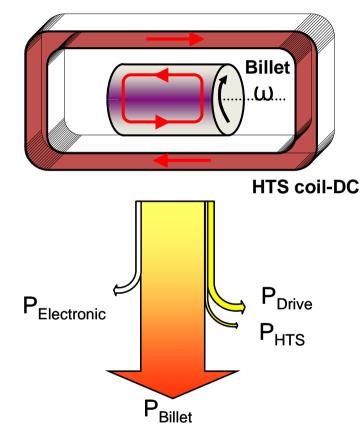
Superconductivity as a key technology from small electronics to large magnet applications

Magnetic Separation High Gradients

Industry solutions are offered for magnetic separation with LTS


Prof. Dr.-Ing. Mathias Noe, KIT "Large Scale Applications of Superconductors" 3rd International Conference on Superconductivity and Magnetism, 29. April – 3. May 2012, Istanbul, Turkey

Magnetic Heating Motivation


Conventional Heating

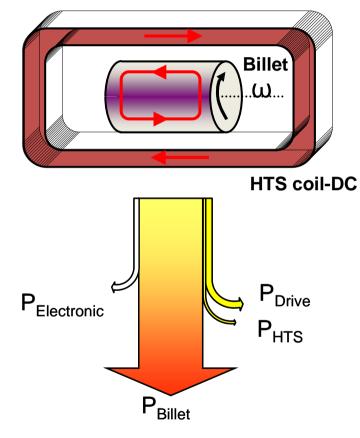
Primary coil-AC

HTS Magnetic Heating

Technology patented EP1582091, US7339145 (Sinvent AS, Norway)

Magnetic Heating Benefits

Higher Efficiency


Faster Heating

Homogenous Heating

e.g. heating of 1 ton Aluminium with 0.5 MW heating power to 520°C:

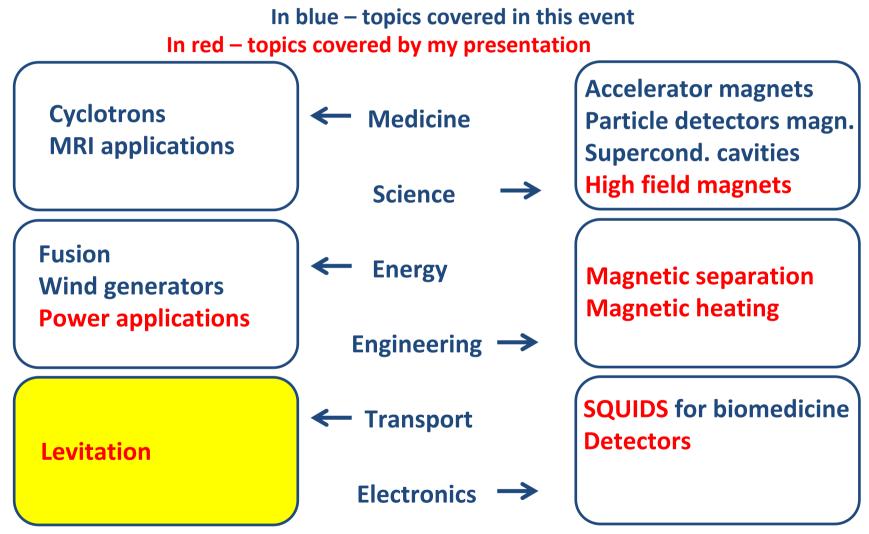
- conventionel 280 kWh
- HTS magnetic heating 160 kWh

HTS Magnetic Heating

Technology patented EP1582091, US7339145 (Sinvent AS, Norway)

Magnetic Heating State-of-the-Art

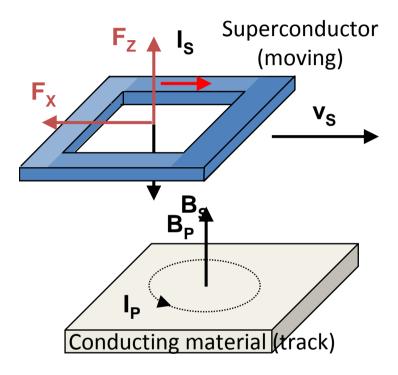
Date	Customer	Metal /Size	Country
Sept 2007	WeserAlu	AI 6″	Germany
Mar 2008	Wieland	Cu 16"	Germany
Jul 2009	Sapa	Al 16"	Italy
Oct 2009	N.N.	Cu 8"	Germany
Jan 2010	WeserAlu	Al 9"	Germany


Courtesy: Zenergy Power

Magnetic heating has been started to enter the market but

Lessons learned?

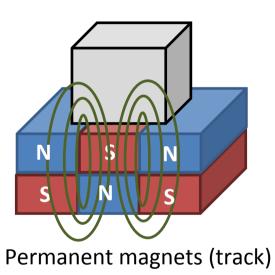
Superconductivity as a key technology from small electronics to large magnet applications



Transportation

Principles

Electrodynamic levitation



Major benefits

- Very high speeds
- self guiding at high speed

Superconducting levitation

Superconductor (moving)

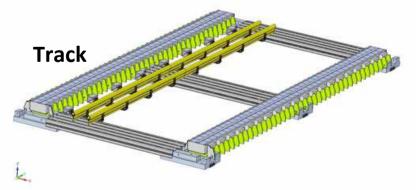
Major benefits

- Stable
- passive
- speed independant

Transportation Electrodynamic Levitation

MLX01

Superconducting magnet and a liquid helium tank on top of it


- 19777 km test line in Miyazaki Prefecture
- 1996 42.8 km test line in Yamanashi
- Nov. 1997 first time speed with more than 500 km per hour
- Dec. 2nd 2003 581 km/h world speed record for all trains
- May 18th 2011 Consent on Tokyo Osaka line (505 km/h)

Extensive test experience with Yamanashi test line.

Courtesy: evico

Vehicle

Length	2500 mm	
Width	1200 mm	
Rated load	600 kg	
Superconductor	YBCO at 77 K	
Max. acceleration	1 m/s²	
Speed	20 km/h	

Track

Track width				
Length				
Curve Radius				
Field in air gap				
Air gap				

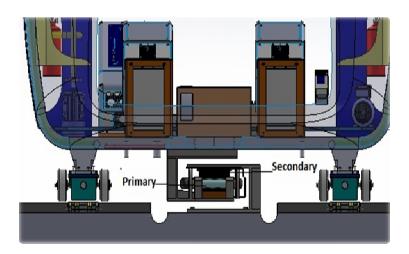
1000 mm 80 m 6.5 m 0.6 T 10 mm

80 m test line in operation at IFW in Dresden since 2011

Track width: 600 mm Air gap: 10 –15 mm Max. acceleration: 2.4 m/s² Max. speed: 8.6 km/h Max. payload: One person, up to 120 kg Magnets: 320 NdFeB magnets

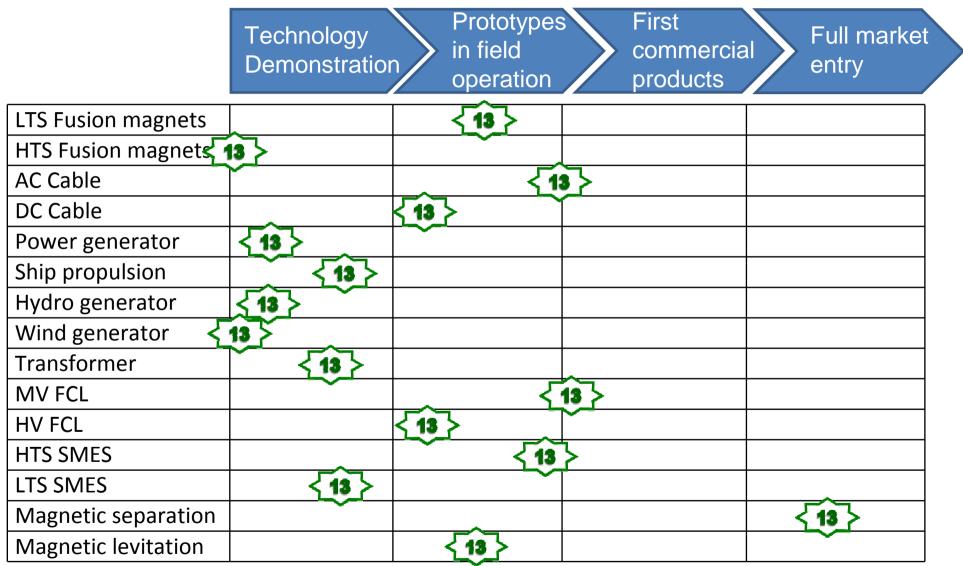
Dimensions: 2,000 × 2,000 × 1,000 mm Max. acceleration: 0.70 m/s² Max. payload: 120 kg (X plane), 60 kg (Y plane) X-axis: 2 large magnetic rails, 1,800 mm apart Max. travel: 1,300 mm, Air gap: 10–15 mm Y-axis: 2 small magnetic rails, 350 mm apart Max. travel: 1,100 mm, Air gap: 5 –10 mm

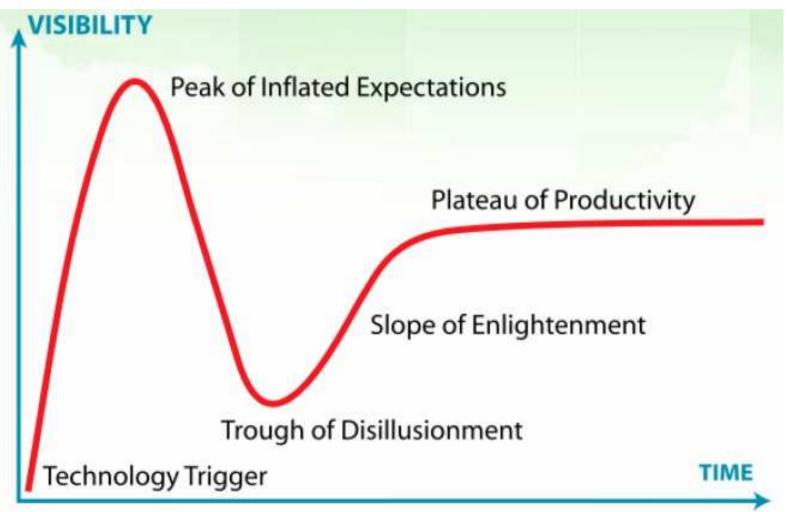
First products demonstrated at Hannover Fair in 2013



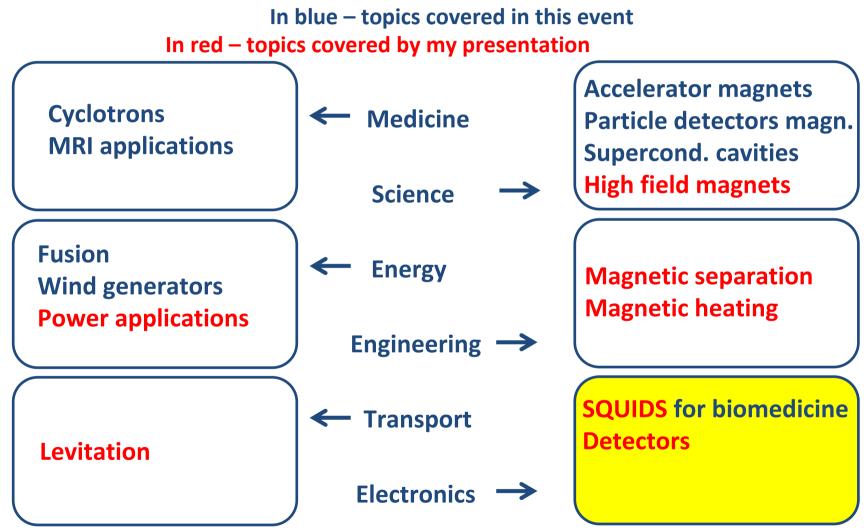
A MagLev vehicle track is being built with 200 m and it will connect 2 buildings at Federal University of Rio de Janeiro

Test module constructed Module weights 750 kg Supports 800 kg load Linear induction motor 12 m Permanent Magnet Guideway


Source: Prof. Rubens Andrade Laboratory for Applied Superconductivity – LASUP Department of Electric Engineering Federal University of Rio de Janeiro – COPPE – UFRJ


Status

Large Scale Energy Applications



Status Large Scale Energy Applications

Superconductivity as a key technology from small electronics to large magnet applications

Overview

Quantum Metrology

- Josephson Voltage Standard

SQUID

- Medicine (MKG, MEG, Pharmacy)
- Geophysical Exploration
- Non-Destructive Testing

Radiation Detectors

- Radio Astronomy
- Medicine, Spectroscropy
- Security

Digital Electronics

- ADC, DAC

Microwave Filters and Resonators

Quantum Computing

Overview

Quantum Metrology

- Josephson Voltage Standard

SQUID

- Medicine (MKG, MEG, Pharmacy)
- Geophysical Exploration
- Non-Destructive Testing

Radiation Detectors

- Radio Astronomy
- Medicine, Spectroscropy
- Security

Digital Electronics

- ADC, DAC

Microwave Filters and Resonators

Quantum Computing

Electronic Applications I I>Icrit. magnetic **SQUID Sensitivity** flux Φ 10-3 $V(\Phi)$ 100 Josephson ; junction Earth's field Microtesla 10 -10-6 1 Power lines 100 Nanotesla Lung particles 10 Automobile 10-9 at 50 meters 1 Human heart 100 Screwdriver Skeletal muscles at 5 meters **Picotesla** Fetal heart 10 Human eye Chip transistor 10-12 1 Human brain at 2 meters (alpha waves) 100 Human brain Femtotesla (evoked response) 10 SQUID system noise level 10-15

Source: Brian Fishbine, SQUID Magnetometry, Los Alamos National Laboratory, 2003

SQUIDS achieve highest magnetic field sensitivity. Applications are in medicine, non destructive testing and geophysics

M. Noe

SQUID Magnetometer for Geophysics

Functions

Sensitive receiver for transient electromagnetic Record the complete gradient tensor of the earth magnetic field. Geomagnetic detection system for near-surface anomalies

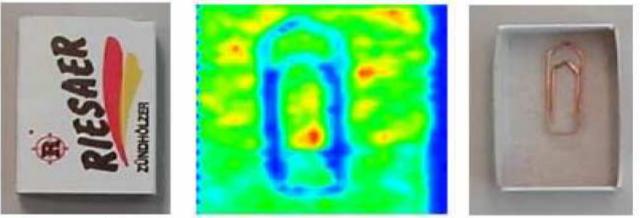
Pictures: Supracon GmbH, Jena, Germany

Purpose

Exploration of minerals

Localises and quantisises magnetic objects under ground or under water Three-dimensional geomagnetic mapping of the ground

SQUIDS are commercial products for geophysics in a growing niche market.

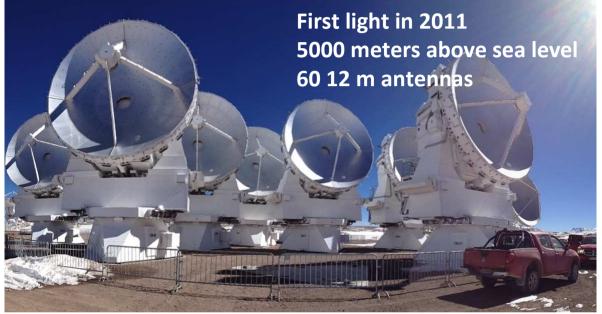


Terahertz Detectors - Security

10 mm	1 mm	100 µm	10 µm	1μm 1	100 nm 10	nm 1nm
_						<u> </u>
Micro wave	Terah	ertz wave	infrared	l <mark>visible</mark>	Ultra v	riolet X-ray
10 GHz 0.1	I THz 1	I THz 10	THz 100	THz 1P	Hz 10 PH:	z 100 PHz

Various Applications

- Medical Care (Tumor diagnostics)
- Security (detection of hidden weapons, explosives, drugs, etc.)
- Radio-Astronomy
- Remote Sensing and Exploration



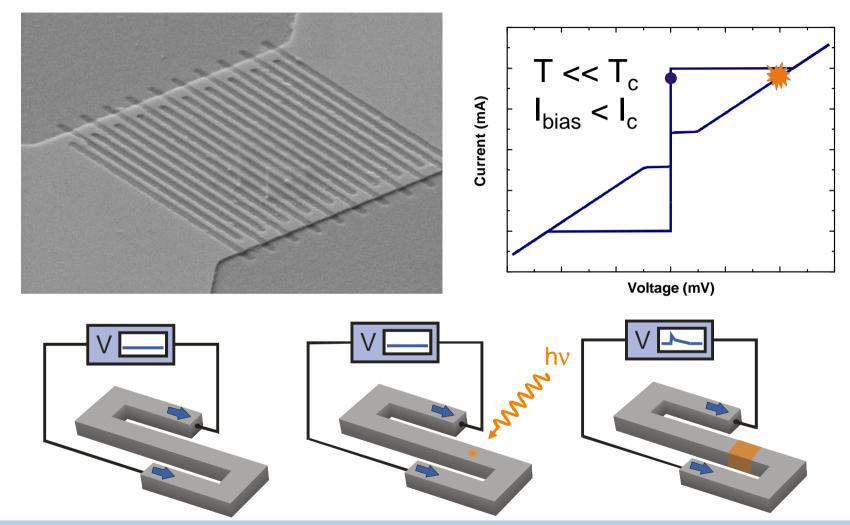
Pictures: M. Siegel, KIT

Radiation Detectors – Radio Astronomy

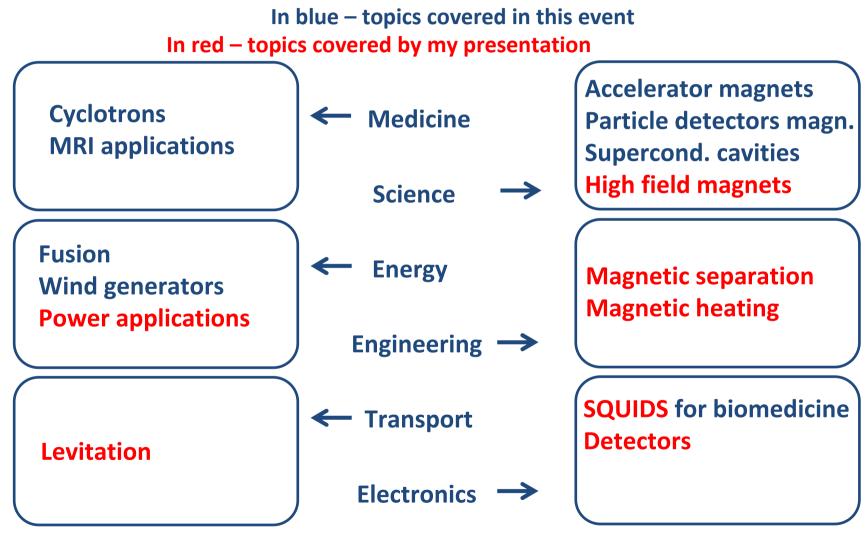
Atacama Large Millimeter/submillimeter Array (ALMA)

http://www.almaobservatory.org/en

80-900 GHz 10 channel SIS receivers per antenna 1500 SIS mixers


Front end receiver

Terahertz detectors have reached maturity in a niche market. All radiotelescopes with more than 100 GHz use superconducting Terahertz detectors.


Electronic Applications Single Photon Detectors - Principle

Single-photon sensitivity from visible to infrared spectrum, e.g. ultrafast spectoscropy

Superconductivity as a key technology from small electronics to large magnet applications

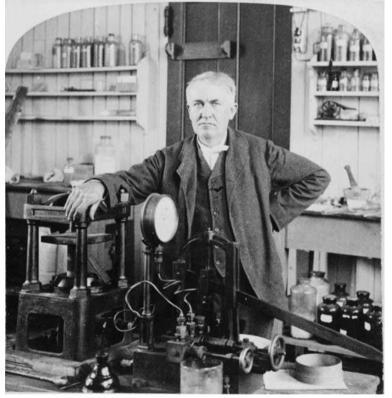
Outlook Which Material for Large Scale Applications?

Magnet Applications	Technology Status	Present Favourite	Future Options			
MRI Magnets	Commercial up to 3 T	NbTi	MgB ₂ , REBCO			
NMR Magnets	Commercial up to 1000 MHz	NbTi, Nb ₃ Sn	REBCO			
Accelerator magnets	In operation up to 9 T	NbTi	Nb ₃ Sn, REBCO, BSCCO			
Fusion magnets	Demonstrator	NbTi, Nb ₃ Sn	REBCO			
R&D and industry magnets	Commercial up to nearly 20 T	NbTi, Nb ₃ Sn	MgB ₂ , REBCO, BSCCO			
Power System Applications						
Cables	Close to commercialisation	BSCCO, REBCO	MgB ₂			
Rotating machines	Demonstrators	BSCCO	REBCO, MgB ₂			
Transformers	Demonstrators	REBCO	-			
Fault current limiters	Close to commercialisation	REBCO, BSCCO	-			
SMES	Prototypes	NbTi	MgB ₂ , REBCO			
Other Applications						
Current leads	Commercial up to a few kA	BSCCO	REBCO			
Electrodynamic levitation	lectrodynamic levitation Demonstrator		BSCCO, REBCO			
Superconducting levitation	Demonstrator	REBCO	-			

Outlook Which Material for Large Scale Applications?

Magnet Applications	agnet Applications Technology Status		Future Options			
MRI Magnets	Commercial up to 3 T	NbTi	MgB ₂ , REBCO			
NMR Magnets	Commercial up to 1000 MHz	NbTi, Nb ₃ Sn	REBCO			
Accelerator magnets	In operation up to 9 T	NbTi	Nb ₃ Sn, REBCO , BSCCO			
Fusion magnets	Demonstrator	NbTi, Nb ₃ Sn	REBCO			
R&D and industry magnets	Commercial up to nearly 20 T	NbTi, Nb ₃ Sn	MgB ₂ , REBCO , BSCCO			
Power System Applications						
Cables	Close to commercialisation	BSCCO, REBCO	MgB ₂			
Rotating machines	Demonstrators	BSCCO	REBCO, MgB ₂			
Transformers	Demonstrators	REBCO	-			
Fault current limiters	Close to commercialisation	REBCO, BSCCO	-			
SMES	Prototypes	NbTi	MgB ₂ , REBCO			
Other Applications						
Current leads	Commercial up to a few kA	BSCCO	REBCO			
Electrodynamic levitation	Demonstrator	NbTi	BSCCO, REBCO			
Superconducting levitation	Demonstrator	REBCO	-			

Thank you very much for your attention !


Outlook What does Superconductivity needs in the Future?

I never did anything by accident, nor did any of my inventions come by accident, they came by work.

Thomas Alva Edison

Anything that won't sell I don't want to invent. Its **sale** is proof of utility and utility is success. Thomas Alva Edison

Hard work + Sales = Success

Thomas A. Edison in his laboratory in New Jersey, 1901 Credit: Underwood & Underwood, publishers. "The most famous inventor of the age--Thos. A. Edison in his laboratory, East Orange, N.J., U.S.A." 1901. Prints and Photographs Division, Library of Congress.

Thank you very much for your attention !

