#### Angle averages from B-factories

Kenkichi Miyabayashi
(Nara Women's University, Japan)
CKM2012, Cincinnati
2012 Sep. 30<sup>th</sup>

# KM unitarity triangle and **CPV** parameter convention

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Irreducible complex phase

causes CP Violation (CPV)!

B system: very good place, all the angles are O(0.1)!



by Wolfenstein parametrization

### Time-dependent CPV

In order to see CPV by interference between decay and mixing.



$$A_{\text{CP}}(\Delta t) = \frac{\Gamma(\overline{B^0}(\Delta t) \rightarrow f_{\text{CP}}) - \Gamma(\overline{B^0}(\Delta t) \rightarrow f_{\text{CP}})}{\Gamma(\overline{B^0}(\Delta t) \rightarrow f_{\text{CP}}) + \Gamma(\overline{B^0}(\Delta t) \rightarrow f_{\text{CP}})} = S_{f_{\text{CP}}} \sin(\Delta m \Delta t) + A_{f_{\text{CP}}} \cos(\Delta m \Delta t)$$

$$S_{f_{CP}} = \frac{2 \operatorname{Im}(\lambda)}{|\lambda|^2 + 1} \quad A_{f_{CP}} = \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1} \quad \lambda = \frac{q}{p} \frac{\overline{A}(f_{CP})}{A(f_{CP})}$$

$$-C_{f_{CP}} = A_{f_{CP}} \quad |\lambda| = 1 \text{ if no DCPV}$$

#### <u>Integrated luminosity of B factories</u>



1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

In total, more than 1G BB pairs are recorded at B-factories and used to measure angles.

## $sin2\phi_1(=sin2\beta)$ at Belle (772M BB)





 $\sin 2\phi_1 = 0.668 \pm 0.023 \pm 0.012$ - $C_{fCP} = A_{fCP} = 0.007 \pm 0.016 \pm 0.012$ PRL108,171802(2012)

## $\sin 2\phi_1(=\sin 2\beta)$ at BaBar (465M BB)







 $\sin 2\phi_1 = 0.687 \pm 0.028 \pm 0.012$ - $C_{fCP} = A_{fCP} = -0.024 \pm 0.020 \pm 0.016$ PRD79,072009(2009)

6

#### Known as a firm SM reference.

$$sin(2\beta) \equiv sin(2\phi_1) \frac{HFAG}{Moriond 2012}$$



# $\phi_2(=\alpha)$ measurement



If tree only,  $S_f$  is directly connected to  $\sin 2\phi_2$  and  $A_f$ =0. Interference with  $b \rightarrow d$  penguin can be solved by isospin analysis.





Decay diagram (tree)

Decay diagram (penguin)

This time, new  $\pi^+\pi^-$ ,  $\rho^0\rho^0$ (Belle) and  $(\rho\pi)^0$  (BaBar) results come.

# $B^0 \rightarrow \pi^+\pi^-$ CPV at Belle (772M BB)



 $\searrow \Delta E$ ,  $M_{bc}$ ,  $\Delta t$ ,  $L_{K\pi}^{\pm}$ ,  $F_{S/B}$  for  $K\pi$ ,  $\pi\pi$ , KK simultaneous 6D fit.

 $B^0 \rightarrow \pi^+\pi^-$  signal yield : 2886±82 events.

#### Signal enhanced sample with very tight cuts





More detail: see Pit Vanhoefer's talk on Saturday

$$S_{fCP}$$
=-0.636±0.082±0.027  
- $C_{fCP}$ = $A_{fCP}$ =+0.328±0.061±0.027

#### New constraint by ππ modes



For  $\pi\pi$ , isospin triangle is found to properly close.

Thanks to CKMfitter friends, especially Olivier Deschamps and Karim Trabelsi for plots including other relevant ones.

# $B^0 \rightarrow \rho^0 \rho^0$ search at Belle (772M BB)



 $\Delta E$ , M<sub>1.2</sub>,  $\cos \theta_{H1.2}$ , F<sub>S/B</sub> 6D fit.

 $B^0 \rightarrow \rho^0 \rho^0$  stat. significance : 2.9 $\sigma$  (including syst.)

More detail: see Pit Vanhoefer's talk on Saturday



Br(B<sup>0</sup> $\rightarrow$  $\rho^{0}\rho^{0}$ )=(1.02±0.30±0.22)×10<sup>-6</sup>, <1.5×10<sup>-6</sup>@90%C.L. f<sub>1</sub>=0.21 +0.22/-0.18 ±0.11

## $B^0 \rightarrow \rho^0 \rho^0$ Belle & BaBar



More precise measurements are necessary.



#### New constraint by pp modes



## BaBar B<sup>0</sup> $\rightarrow$ ( $\rho\pi$ )<sup>0</sup> result



 $^{\triangleright}$   $M_{bc}$ ,  $\Delta E$ ,  $NN_{output}$ ,  $\Delta t$ , m'  $\theta'$  6D time-dep. Dalitz fit.



Signal yield : 2940±100 events.  $\alpha$ = $\phi_2$  scan is performed.

More detail : see Tomo Miyashita's talk in Sunday morning

# $\alpha = \phi_2$ scan in $(\rho \pi)^0$ mode in BaBar

More detail : see Tomo Miyashita's







15

Result behavior is non-Gaussian. At  $2\sigma$  level, most of the region is still allowed in  $\rho\pi$  case in general.

New BaBar most favored  $\alpha = \phi_2$  value moves to the one by old average.

### New constraint by ππ/ρρ/ρπ modes



Disclaimer: BaBar new  $(\rho\pi)^0$  result could not be included, though  $\rho\pi$  modes don't constrain so strongly compared with  $\rho\rho$  and  $\pi\pi$ .

$$\alpha = \phi_2 = (88.5 + 4.7/-4.4)^{\circ}$$

### Another approach



# $\phi_3 = \gamma$ constraint

| Principle                                                                                          | Method Name and reference                                                 |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $D^0$ or $D^{*0} \rightarrow CP$ eigenstate                                                        | GLW, PLB253,483(1991),<br>PLB265,172(1991)                                |
| Enhance CP asymmetry by suppressed D decay                                                         | ADS, PRL78,3357(1997),<br>PRD63,036005(2001)                              |
| Dalitz distribution in three-<br>body D decay (K <sub>S</sub> p <sup>+</sup> p <sup>-</sup> , etc) | GGSZ, PRD68,054018(2003),<br>Belle Dalitz Analysis meeting<br>proceedings |

Use all available information to get  $\phi_3 = \gamma$ .

# Belle GLW by D\*0 K (772M BB)

 $D^{*0} \!\!\to\! D^0 \pi^0, \; D^0 \!\!\to\! K^+ K^-, \; \pi^+ \pi^- \qquad \qquad \qquad D^{*0} \!\!\to\! D^0 \pi^0, \; D^0 \!\!\to\! K_S \pi^0, \; K_S \; \eta$ 

KID > 0.6 (kaon-like)

KID> 0.6 (kaon-like)



CP asymmetry central values support expectation of sign flip according to the CP eigenvalue of D<sup>0</sup> decay final state.

More detail: see Karim Trabelsi talk on Sunday afternoon.

# Belle GLW by D\*0 K (cont.)

$$D^{*0} \rightarrow D^{0} \gamma$$
,  $D^{0} \rightarrow K^{+}K^{-}$ ,  $\pi^{+}\pi^{-}$ 





CP asymmetry central values still does not contradict expectation of sign flip by CP eigenvalue.

More detail: see Karim Trabelsi talk on Sunday afternoon. 20

# Belle $\phi_3 = \gamma$ constraint



More detail : see Karim Trabelsi talk on Sunday afternoon. 21



# BaBar $\phi_3$ = $\gamma$ constraint

Translate ADS&GLW measurements into GGSZ-familiar cartesian variables,  $x_{\pm i} = r_{Bi} \cos(\delta_{Bi} \pm \phi_3)$ ,  $y_{\pm i} = r_{Bi} \sin(\delta_{Bi} \pm \phi_3)$ , where i = DK,  $DK^*$  and  $D^*K$ .



More detail: see Denis Derkach's talk on Sunday afternoon.

#### Summary

- $\sin 2\phi_1 = \sin 2\beta = 0.68 \pm 0.02$  in World Average.
  - It is a firm SM reference point.
- Constraint on  $\phi_2 = \alpha : (88.5 + 4.4/-4.2)^\circ$ 
  - Belle new B<sup>0</sup>→ $\pi$ <sup>+</sup> $\pi$ <sup>-</sup>,  $\rho$ <sup>0</sup> $\rho$ <sup>0</sup> results shown.
  - − BaBar new B<sup>0</sup>→( $\rho\pi$ )<sup>0</sup> result shown.
  - Still several not updated analyses from Belle : awaited.
- Belle and BaBar come up with each  $\phi_3 = \gamma$  constraint.
  - Belle new B→D\*0 K GLW results shown.
  - Belle: (68 +15/-14)°
  - BaBar : (69 +17/-16)°
- We see still relevant CPV measurements are active at B-factories.