γ/ϕ_3 @ ee colliders

Yoshiyuki Onuki Tohoku University On behalf of Belle

Flavor Physics and CP Violation 2011, 21 May 2011, Israel

On Earthquake

As is now well known, Japan suffered a terrible earthquake and tsunami on March 11, which has caused tremendous damage, especially in the Tohoku area. Fortunately, all KEK personnel and users are safe and accounted for. The injection linac did suffer significant but manageable damage, and repairs are underway. The damage to the KEKB main rings appears to be less serious, though non-negligible. No serious damage has been reported so far at Belle. Further investigation is necessary. We would like to convey our deep appreciation to everyone for your generous expressions of concern and encouragement.

Outline

- Introduction
- γ/ϕ_3 measurements
- Experimental apparatus
- GGSZ results
- ADS results
- GLW results
- Summary

Introduction

N. Cabibbo, PRL.10, 531 (1963);M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973). I. I. Bigi and A. I. Sanda, Phys. Lett. B 211, 213 (1988).

In the Standard Model, irreducible complex phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix cause the *CP* violation.

$$V_{n=3} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

γ/ϕ_3 measurements

Interference between tree diagram $b \rightarrow c$ and $b \rightarrow u(V_{ub} \propto e^{-i\phi^3})$ in charged $B \rightarrow D^{(*)0}K^{(*)}$ or self-tagging neutral $B^0 \rightarrow D^{(*)0}K^{*0}$ ($K^{*0} \rightarrow K^+\pi^-$)

- GGSZ: Cabibbo favored multibody decays with Dalitz plane
- ADS: doubly Cabibbo suppressed
- GLW: CP eigenstates (Cabibbo suppressed)

ee collider B-factories

Integrated Luminosity at B-factories

Integrated Luminosity(cal)

Dalitz Plot(DP) Analysis of $B^- \rightarrow D^{(*)}K^{(*)-} D \rightarrow K_s h^+h^-$

 $f(m_+^2, m_-^2)$... consists of summing over the intermediate resonance amplitudes of $K_Sh^+(K_Sh^-)$ at each fraction.

 r_B ...is ratio of interfering amplitudes of A(B→DK) and A(B→\overline{D}K) ~|V_{ub}*V_{cs}|/|V_{cb}*V_{us}| × color suppression~0.1-0.2

Model-dependent DP analysis

A.Poluektov et al.,

PRD 81,112002(2010)

468M

9

P. del Amo Sanchez et al. PRL 105, 121801(2010)

Belle: $D \rightarrow K_{S} \pi \pi$ produced in the $B^{-} \rightarrow D^{(*)} K^{-}$ where $D^{*} \rightarrow D \pi^{0}$ and $D \gamma$

BaBar: $D \rightarrow K_S \pi \pi$ and $D \rightarrow K_S K K$ produced in the $B^- \rightarrow D^{(*)} K^-$ and $B^- \rightarrow D K^{(*)-}$ where $D^* \rightarrow D\pi^0$ and $D\gamma$, $K^* \rightarrow K_S\pi$

		Unbinned model-de	ependent DP analysis	with	isobar model
	L			π π	ω(782) ⁰
	(ππ	σ_1^{0}		ππ	ρ(770) ⁰
	ππ	ρ(770) ⁰		K _s π	K*(892)
	ππ	ω(782) ⁰	$D^0 > K \pi \pi$	K _s π	K*(1680)⁻
	ππ	f0(980) ⁰	$D^{2} \rightarrow K_{S} h h$	ππ	f ₂ (1270) ⁰
	ππ	σ_2^0		K _s π	K ₀ *(1430),K ₂ *(1430)
	ππ	f ₂ (1270) ⁰		ππ	S-wave K-matrix
$D^0 \rightarrow K_s \pi \pi $	ππ	f ₀ (1370) ⁰		〜 K _s π	S-wave K-matrix
5	ππ	ρ(1450) ⁰			
	K _s π	K*(892)		∕ KK _s	a _o (980)
	K _s π	K*(1410)		KKs	a ₀ (1450)
	K _s π	K ₂ *(1430)		KK	a ₀ (980) ⁰
	K _s π	К ⁻ (1680)	$D^0 \rightarrow K_s K K \prec$	КК	a ₀ (1450) ⁰
			č	КК	f ₀ (1370) ⁰
				KK	φ(1020) ⁰
				KK	f ₂ (1270) ⁰

Model-dependent DP analysis results

468M

P. del Amo Sanchez *et al.* PRL 105, 121801(2010)

Combining the results for $B \rightarrow D^{(*)}K$

$$\phi_{3} = (78.4^{+10.8}_{-11.6} \pm 3.6 \pm 8.9 \text{(model)})^{\circ}$$

$$r_{DK} = 0.160^{+0.040}_{-0.038} \pm 0.011^{+0.050}_{-0.010}$$

$$r_{D^{*}K} = 0.196^{+0.072}_{-0.069} \pm 0.012^{+0.062}_{-0.012}$$

$$\delta_{DK} = 136.7^{\circ} \, {}^{+13.0^{\circ}}_{-15.8^{\circ}} \pm 4.0^{\circ} \pm 22.9^{\circ}$$

$$\delta_{D^{*}K} = 341.9^{\circ} \, {}^{+18.0^{\circ}}_{-19.6^{\circ}} \pm 3.0^{\circ} \pm 22.9^{\circ}$$

Combining the results for $B \rightarrow D^{(*)}K^{(*)}$

 ϕ_3 =(68±14±4±3(model))°

 $r_{B} = 9.6 \pm 2.9 \{0.5, 0.4\}$ $r^{*}B = 13.3^{+4.2}_{-3.9} \{1.3, 0.3\}$ $\kappa r_{s} = 14.9^{+6.6}_{-6.2} \{2.6, 0.6\}$ $\delta_{B} = 119^{+19}_{-20} \{3, 3\}$ $\delta_{B}^{*} = -82 \pm 21 \{5, 3\}$ $\delta_{s} = 111 \pm 32 \{11, 3\}$

Where { , } is {experimental, model} systematic uncertainties.

Model-independent binned DP analysis

Model-independent optimal binned DP analysis

A. Giri, Yu. Grossman, A. Soer, J. Zupan, PRD 68, 054018 (2003) A. Bondar, A.Poluektov, EPJ C 47, 347 (2006); EPJ C 55, 51 (2008)

Binning is chosen to minimize the strong phase difference $\Delta \delta_D$ between $D^0 \rightarrow K_s \pi \pi$ and $\overline{D}^0 \rightarrow K_s \pi \pi$ from the isobar model.

11

Model-independent Binned DP yield and plot

Dalitz analysis results of $B^- \rightarrow D^{(*)}K^{(*)-}, D \rightarrow K_sh^+h^-$

 $y_{-}=+0.055\pm0.045\pm0.014\pm0.017$ $y_{-}=+0.137 \quad {}^{+0.053}_{-0.057} \pm 0.019\pm0.029$ $x_{+}=-0.110\pm0.043\pm0.014\pm0.016$ $y_{+}=-0.050 \quad {}^{+0.052}_{-0.055} \pm 0.011\pm0.021$

 $\phi_{3} = (77.3^{+15.1}_{-14.9} \pm 4.2 \pm 4.3(c_{i},s_{i}))^{\circ}$ $r_{B} = 0.145 \pm 0.030 \pm 0.011 \pm 0.011$ $\delta_{B} = (129.9 \pm 15.0 \pm 3.9 \pm 4.7)^{\circ}$

ADS Analyses of $B^- \rightarrow D^{(*)}K^{(*)-}$

D. Atwood, I. Dunietz, and A. Soni, PRL. 78,3257 (1997); PRD 63, 036005 (2001).

ADS measurements at Belle

Belle reports the first evidence for $B^+ \rightarrow DK^+$, $D^0 \rightarrow K^+ \pi^-$ with a significance of 4.1 σ

ADS measurements at BaBar

BaBar reports $B^- \rightarrow D^{(*)}K^-$ followed by $D^* \rightarrow D\gamma$, $D\pi^0$ and $D \rightarrow K^-\pi^+$

ADS Results of $B^- \rightarrow D^{(*)}K^{(*)-}$ and $B^- \rightarrow D^{(*)}\pi^-$

GLW Analyses of $B^- \rightarrow D^{(*)}K^{(*)-}$

GLW measurements

Direct CPV A_{CP+} 3.6 σ away from 0

Translations to γ , r_B , δ_B

Also, exclude $D \rightarrow K_S \phi$, $\phi \rightarrow K^+ K^-$ events and applied event selection Kh^+h^-

$$x_{\pm} = r_{\rm B} \cos(\delta_{\rm B} \pm \gamma) \begin{cases} A_{CP-} = -0.08 \pm 0.07(\text{stat}) \pm 0.02(\text{syst}), \\ R_{CP-} = 1.03 \pm 0.09(\text{stat}) \pm 0.04(\text{syst}). \\ x_{\pm} = -0.057 \pm 0.039(\text{stat}) \pm 0.015(\text{syst}), \\ x_{\pm} = 0.132 \pm 0.042(\text{stat}) \pm 0.018(\text{syst}), \end{cases}$$

$$P. \text{ del Amo Sanchez et all PRD 82, 072004(2010)} \\ PRD 82, 072004(2010) \end{cases}$$

GLW Results of $B^- \rightarrow D^{(*)}K^{(*)-}$

Summary

 Model-dependent unbinned Dalitz plot analysis of $B \rightarrow D^{(*)}K$, $D \rightarrow K_s \pi \pi$ in Belle.

 $\phi_3 = (78.4^{+10.8}_{-11.6} \pm 3.6 \pm 8.9 \text{(model)})^\circ$ PRD 81,112002(2010)

 Model-dependent unbinned Dalitz plot analysis of $B \rightarrow D^{(*)}K^{(*)}$, $D \rightarrow K_s \pi \pi$ and $K_s KK$ in BaBar.

> P. del Amo Sanchez *et al.* $\phi_3 = (68 \pm 14 \pm 4 \pm 3 \pmod{)}^{\circ}$

PRL 105, 121801(2010)

• First model-independent unbinned Dalitz plot analysis of $B \rightarrow DK$, $D \rightarrow K_s \pi \pi$ in Belle.

 $\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.2 \pm 4.3(c_i,s_i))^{\circ}$ Belle Preliminary

• First evidence of ADS R_{DK} with $B^- \rightarrow DK^-$, $D \rightarrow K^-\pi^+$ at 4.1σ Y.Horii *et al.*, in Belle. $\mathcal{R}_{DK} = [1.63^{+0.44}_{-0.44}(^{+0.07}_{-0.13}(\text{syst})] \times 10^{-2}, \text{ arXiv:} 1103.5951v1$

accepted to PRL

- Direct CPV GLW A_{CP+} in B \rightarrow DK, D \rightarrow KK and $\pi\pi$ at 3.6 σ P. del Amo Sanchez et al. in BaBar. $A_{CP+} = 0.25 \pm 0.06(\text{stat}) \pm 0.02(\text{syst}),$ PRD 82, 072004(2010)
- New ϕ_3/γ results from e⁺e⁻ colliders are coming soon.

Backup slides

Yields of $B^- \rightarrow D^{(*)} K^{(*)-}$ with $D \rightarrow K_s h^+ h^-$

Previous results of Dalitz plot analysis

 $r_{\text{D*K}} = 0.196 \stackrel{+0.072}{_{-0.069}} \pm 0.012 \stackrel{+0.062}{_{-0.012}}$

 $\delta_{\text{DK}} = (136.7 + 13.0) \pm 4.0 \pm 22.9)^{\circ}$

 $\delta_{D^*K} = (341.9 + 18.0 \pm 3.0 \pm 22.9)^{\circ}$

Both the measurements are adopted model-dependent Dalitz analysis.

Continuum Suppression

- ▶ Main background is $e^+e^- \rightarrow q\overline{q}$ (q=u, d, s, c) continuum process.
- To discriminate this background, new technique employs NeuroBayes (NB) neural network.

Belle model-dep. DP syst.

Source of uncertainty	Δx_{-}	Δy_{-}	Δx_+	Δy_+
Dalitz plot efficiency	± 3.0	± 1.9	± 3.2	± 1.6
Crossfeed between bins	+0.4	+3.0	-0.7	-0.9
Signal shape				
Parametrization				
$(M_{\rm bc},\Delta E)$	-0.2	+0.5	+0.2	-4.8
$(\cos heta_{ m thr}, {\cal F})$	-0.5	-1.5	-0.8	-1.3
Correlation btw. $(M_{\rm bc}, \Delta E)$ and $(\cos \theta_{\rm thr}, \mathcal{F})$	+0.2	+0.5	+0.0	-0.2
MC uncertainty in $(\cos \theta_{\rm thr}, \mathcal{F})$	-0.5	-1.0	-0.5	-0.7
Correlation with Dalitz plot	+0.5	-0.1	-0.6	+0.1
u, d, s, c continuum shape				
Off-resonance data uncertainty in $(M_{\rm bc}, \Delta E)$	-0.2	+0.2	-0.1	-0.2
Parametrization				
$(M_{ m bc},\Delta E)$	+0.3	+0.7	+0.2	-0.6
$(\cos heta_{ m thr}, \mathcal{F})$	+0.2	+1.1	-0.1	+0.5
Correlation btw. $(M_{\rm bc}, \Delta E)$ and $(\cos \theta_{\rm thr}, \mathcal{F})$	+0.8	+0.6	+0.8	+1.0
Random $B\overline{B}$ shape				
Parametrization				
$(M_{ m bc},\Delta E)$	+0.2	+0.3	+0.2	+0.2
$(\cos heta_{ m thr}, \mathcal{F})$	+0.3	+0.7	+0.4	+0.3
Correlation btw. $(M_{\rm bc}, \Delta E)$ and $(\cos \theta_{\rm thr}, \mathcal{F})$	-0.2	-0.6	-0.2	-0.3
Dalitz distribution	+3.2	-0.7	+4.5	-0.6
MC uncertainty				
$(M_{ m bc},\Delta E)$	-0.5	-1.1	-0.4	-0.7
$(\cos \theta_{ m thr}, \mathcal{F})$	+0.0	+0.1	-0.1	+0.3
Peaking $B\overline{B}$ shape				
Parametrization	< 0.1	< 0.1	< 0.1	< 0.1
MC uncertainty	< 0.1	< 0.1	< 0.1	< 0.1
c_i, s_i precision	± 2.6	± 6.5	± 2.6	± 6.5
Flavor-tagged statistics	± 1.7	± 2.0	± 1.6	± 2.0
Fit bias	± 0.4	± 0.5	± 0.4	± 0.5
Total without c_i, s_i precision	± 5.0	± 5.0	± 6.0	± 6.0
Total	± 5.6	± 8.2	± 6.5	± 8.8

BaBar model-dep. Prev. DP syst.

TABLE V. Summary of the main contributions to the Dalitz model systematic error on the CP parameters.

Source	<i>x</i> _	У-	x_+	<i>y</i> +	x_{-}^{*}	<i>y</i> *–	x_{+}^{*}	y_{+}^{*}	x_{s-}	y_{s-}	x_{s+}	y_{s+}
Mass and width of Breit-Wigner's	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.003	0.003	0.001	0.002	0.002
$\pi\pi$ S-wave K-matrix solutions	0.003	0.012	0.003	0.001	0.003	0.007	0.002	0.009	0.001	0.001	0.013	0.003
$K\pi$ S-wave parametrization	0.001	0.001	0.002	0.004	0.001	0.003	0.001	0.003	0.005	0.001	0.004	0.002
Angular dependence	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.003	0.001	0.003	0.001
Blatt-Weisskopf radius	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.003
Add/remove resonances	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.001	0.001	0.002
Dalitz plot efficiency	0.006	0.004	0.008	0.001	0.002	0.004	0.002	0.003	0.008	0.001	0.008	0.004
Background Dalitz plot shape	0.003	0.002	0.004	0.001	0.001	0.001	0.001	0.001	0.004	0.001	0.004	0.002
Normalization and binning	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.001	0.003	0.001
Mistag rate	0.008	0.006	0.006	0.005	0.002	0.001	0.002	0.003	0.008	0.010	0.004	0.007
Dalitz plot complex amplitudes	0.002	0.002	0.003	0.004	0.001	0.001	0.002	0.006	0.003	0.003	0.004	0.002
Total Dalitz model	0.011	0.015	0.011	0.008	0.004	0.010	0.005	0.012	0.014	0.011	0.018	0.010

Belle ADS syst.

Source	R_{DK}	$R_{D\pi}$	\mathcal{A}_{DK}	$\mathcal{A}_{D\pi}$
Fit	±26%	±3.1%	± 0.40	± 0.04
Peaking backgrounds	$^{+2}_{-25}\%$	$^{+2.2}_{-5.3}$ %		
Efficiency	±2.7%	$\pm 2.5\%$		
Detector asymmetry			± 0.01	± 0.01

BaBar ADS syst.

	$\Lambda \mathcal{R}(10^{-3})$	$\Lambda \mathcal{R}(10^{-3})$	$\Lambda \mathcal{R}(10^{-3})$
Source	$D\pi$	$D^*_{D\pi^0}\pi$	$D_{D\gamma}^*\pi$
Signal NN	±0.1	± 0.1	±0.1
$B\bar{B}$ background NN	± 0.1	± 0.1	± 0.9
udsc background NN	± 0.1	± 0.1	± 0.3
$B\bar{B}$ combinatorial background shape ($m_{\rm ES}$)	± 0.2	± 0.1	± 0.2
Peaking background WS	± 0.2	± 0.8	± 2.0
Peaking background RS	± 0.0	± 0.1	± 0.1
$B\bar{B}$ combinatorial background	-	± 0.0	± 0.4
Combined	±0.4	± 0.8	±2.2

TABLE V. Summary of systematic uncertainties on \mathcal{R} for $D^{(*)}\pi$, in units of 10^{-3} .

Belle model-indep. DP syst.

ϕ_3 : Systematic errors

Systematic errors in units 10^{-3} .

Source of uncertainty	Δx_{-}	Δy_{-}	Δx_+	Δy_+
Dalitz plot efficiency	4.8	2.0	5.6	2.1
Crossfeed between bins	0.4	9.0	0.6	3.0
Signal shape	7.3	7.4	7.3	5.1
u, d, s, c continuum background	6.7	5.6	6.6	3.2
$B\overline{B}$ background	7.8	12.2	7.2	6.1
$B^{\pm} ightarrow D \pi^{\pm}$ background	1.2	4.2	1.9	1.9
Flavor-tagged statistics	1.5	2.7	1.7	1.9
Fit bias	3.2	5.8	3.2	5.8
c _i , s _i precision	10.1	22.5	7.2	17.4
Total without c_i, s_i precision	±14.0	±19.4	±14.0	±11.3
Total	±17.3	±29.7	±15.7	±20.7

Moriond EW, 16 March 2011

25/20

CLEO ci, si result

TABLE IX. Fit results for c_i and s_i . The first error is statistical, the second error is the systematic uncertainty (excluding Δc_i , Δs_i), and the third error is the systematic uncertainty due to Δc_i and Δs_i that relate the $K_S^0 \pi^+ \pi^-$ and $K_L^0 \pi^+ \pi^-$ Dalitz-plot models.

i	C _i	s _i
1	$0.743 \pm 0.037 \pm 0.022 \pm 0.013$	$0.014 \pm 0.160 \pm 0.077 \pm 0.045$
2	$0.611 \pm 0.071 \pm 0.037 \pm 0.009$	$0.014 \pm 0.215 \pm 0.055 \pm 0.017$
3	$0.059 \pm 0.063 \pm 0.031 \pm 0.057$	$0.609 \pm 0.190 \pm 0.076 \pm 0.037$
4	$-0.495 \pm 0.101 \pm 0.052 \pm 0.045$	$0.151 \pm 0.217 \pm 0.069 \pm 0.048$
5	$-0.911 \pm 0.049 \pm 0.032 \pm 0.021$	$-0.050 \pm 0.183 \pm 0.045 \pm 0.036$
6	$-0.736 \pm 0.066 \pm 0.030 \pm 0.018$	$-0.340 \pm 0.187 \pm 0.052 \pm 0.047$
7	$0.157 \pm 0.074 \pm 0.042 \pm 0.051$	$-0.827 \pm 0.185 \pm 0.060 \pm 0.036$
8	$0.403 \pm 0.046 \pm 0.021 \pm 0.002$	$-0.409 \pm 0.158 \pm 0.050 \pm 0.002$

TABLE X. Fit results for c'_i and s'_i . The first error is statistical, the second error is the systematic uncertainty (excluding Δc_i , Δs_i), and the third error is the systematic uncertainty due to Δc_i and Δs_i .

i	c'_i	s'_i
1	$0.840 \pm 0.037 \pm 0.023 \pm 0.014$	$-0.021 \pm 0.160 \pm 0.080 \pm 0.036$
2	$0.779 \pm 0.071 \pm 0.039 \pm 0.008$	$-0.069 \pm 0.215 \pm 0.060 \pm 0.047$
3	$0.250 \pm 0.063 \pm 0.029 \pm 0.102$	$0.587 \pm 0.190 \pm 0.072 \pm 0.006$
4	$-0.349 \pm 0.101 \pm 0.057 \pm 0.092$	$0.275 \pm 0.217 \pm 0.067 \pm 0.058$
5	$-0.793 \pm 0.049 \pm 0.029 \pm 0.036$	$-0.016 \pm 0.183 \pm 0.046 \pm 0.042$
6	$-0.546 \pm 0.066 \pm 0.028 \pm 0.038$	$-0.388 \pm 0.187 \pm 0.056 \pm 0.072$
7	$0.475 \pm 0.074 \pm 0.036 \pm 0.081$	$-0.725 \pm 0.185 \pm 0.065 \pm 0.058$
8	$0.591 \pm 0.046 \pm 0.021 \pm 0.011$	$-0.374 \pm 0.158 \pm 0.059 \pm 0.054$

CLEO ci, si systematics

			-					
	c_1	<i>c</i> ₂	<i>c</i> ₃	c_4	c_5	<i>c</i> ₆	c_7	<i>c</i> ₈
$K_i^{(\prime)}$ statistics error	0.010	0.015	0.016	0.019	0.009	0.015	0.018	0.008
Momentum resolution	0.008	0.015	0.012	0.019	0.011	0.012	0.017	0.009
Efficiency variation	0.004	0.007	0.011	0.008	0.005	0.008	0.010	0.006
Single-tag yields	0.006	0.007	0.013	0.011	0.005	0.008	0.015	0.008
Tag side background	0.007	0.007	0.014	0.013	0.006	0.008	0.014	0.011
$K_{S}^{0}\pi^{+}\pi^{-}$ background	0.001	0.002	0.009	0.027	0.012	0.006	0.003	0.002
$K_L^0 \pi^+ \pi^-$ background	0.006	0.018	0.004	0.024	0.017	0.012	0.020	0.006
Multi-candidate selection	0.002	0.003	0.003	0.008	0.004	0.006	0.003	0.002
Non- D/\bar{D}	0.010	0.016	0.004	0.007	0.004	0.005	0.006	0.005
DCSD	0.009	0.012	0.005	0.013	0.014	0.010	0.013	0.006
Sum	0.022	0.037	0.031	0.052	0.032	0.030	0.042	0.021

TABLE V. Systematic uncertainties for c_i .

		TABLE VI. Systematic uncertainties for s_i .						
	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	\$5	<i>s</i> ₆	<i>s</i> ₇	<i>s</i> ₈
$K_i^{(\prime)}$ statistics error	0.031	0.027	0.039	0.030	0.023	0.023	0.033	0.026
Momentum resolution	0.018	0.035	0.023	0.033	0.023	0.022	0.022	0.018
Efficiency variation	0.018	0.012	0.019	0.010	0.013	0.018	0.013	0.012
Single-tag yields	0.005	0.001	0.005	0.004	0.003	0.003	0.005	0.003
Tag side background	0.004	0.001	0.001	0.003	0.001	0.004	0.002	0.001
$K_{S}^{0}\pi^{+}\pi^{-}$ background	0.005	0.008	0.030	0.023	0.005	0.003	0.016	0.014
$K_L^0 \pi^+ \pi^-$ background	0.050	0.022	0.018	0.035	0.006	0.024	0.005	0.025
Multi-candidate selection	0.036	0.018	0.033	0.012	0.022	0.026	0.028	0.011
Non- D/\bar{D}	0.005	0.003	0.004	0.005	0.005	0.005	0.003	0.002
DCSD	0.023	0.004	0.030	0.019	0.015	0.006	0.027	0.020
Sum	0.077	0.055	0.076	0.069	0.045	0.052	0.060	0.050