Grid Deployment Experiences. The path to a production quality L DAP based
grid information system

L. Field, M. W. Schulz, CERN, Geneva, Switzerland

Abstract

This paper reports on the deployment experience of the
de-facto grid information system, Globus MDS (Meta-data
Directory Service) [1], in a large scale production grid and
how this experience led to the development of an infor-
mation caching system based on a standard OpenLDAP
(Lightweight Directory Access Protocol) [2] database. The
paper then describes how this caching system was devel-
oped further, from the results of performance and scalabil-
ity tests, into a production quality information system. The
generic information provider is also introduced and the rea-
sons for its development explained.

INTRODUCTION

The Globus Project is the self defined de-facto stan-
dard for grid computing [3]. Many grid projects around
the world are based on the Globus Tool Kit 2 (GTK2)
from Globus [4]. Once such project was the EU Datagrid
(EDG) project [5]. The objective of the project was to pro-
vide a grid computing infrastructure for intensive computa-
tion and distributed data storage, across widely distributed
scientific communities. This involved building on top of
GTK2, higher level services that included: resource bro-
kering, data management, grid monitoring and distributed
mass storage.

GTK2 contains four core components; Grid Resource
Allocation Manager (GRAM), GridFTP, Grid Security In-
frastructure (GSI) and the Meta-data Directory Service
(MDS) [3]. MDS is the grid information service. The data
model for the information service is based on LDAP and
the information that can be used in the information system
is defined by an LDAP schema. The information system is
made of three parts; information providers, Grid Resource
Information Services (GRIS), Grid Information Index Ser-
vices (GIIS) [1].

An information provider is a script that obtains static in-
formation from a configuration file and dynamic informa-
tion about local services. This information is formated into
LDAP Data Interchange Format (LDIF) and printed to std-
out.

The GRIS is deployed on the same node as the informa-
tion provider. The GRIS can be queried via an Idapsearch
with a base dn of mds-vo-name=local,0o=grid. When the
GRIS is queried, it will execute the information provider,
obtain the LDIF and return the result of the query. The
GRIS can register itself with a GIIS.

A GIIS can be on the same machine as the GRIS but

is usually found on another machine. The GIIS can be
queried via an Idapsearch with a base dn set to the GIIS
name. When the GIIS is queried, the back end will query
all GRISes that have registered to the GIIS. A GIIS can reg-
ister itself with another GIIS. All information can be found
from one point by building up a hierarchy GIIS structure.
To make the system more efficient, there is a caching mech-
anism built into the GIIS and GRIS. This makes the system
more efficient but will also result in the information being
slightly stale.

EDG DEPLOYMENT

The EDG project had a development testbed consisting
of five sites; CERN Switzerland, Ruthford Appleton Lab-
oratory UK, CNAF Italy, NIKHEF Netherlands and IN2P3
France. The main building blocks, nodes, were the Com-
puting Element (CE) and the Storage Element (SE). The
CE is the interface to computing resources and the SE is
the interface to storage. Each site in the testbed contained
one CE and one SE. The CE and SE are the main sources
of information in the grid information system. Both the CE
and SE had a GRIS installed and an information provider.
Each site ran a site GIIS and a region GIIS on the CE. The
top level GIIS was located at CERN. (see Fig. 1).

Top
GIIS

[JCw] [P Jf1]

Figure 1: Initial Deployment

Initial Deployment Problems

The information system is the central nervous system of
any grid and without a working information system, the
other grid middleware can not function.

There was one major problem with the information sys-
tem that would stop the grid from functioning, queries to
the top level GIIS would hang. This occurred if there were
any problems in the lower levels of the hierarchy. Due to

the levels in the information system hierarchy not being
completely decoupled, queries could to the top level GIIS
could depend on an information provider being executed.
If the information provider hung or took a long time to re-
turn, the whole information system would wait. MDS had
a number of configurable timeout parameters to deal with
such situation but if was found that no of these worked.
Over a six month period the MDS code was investigated
and a number of bugs were found that help fix some of
these timeout problems.

After these timeout fixes, stress testing the information
system caused the information system to hang again. With
a query load on the top level GIIS of three queries per sec-
ond and three sites, the information system would func-
tion. However, when a fourth site was added, the informa-
tion system would hang. A test was conducted by David
Groep, to compare MDS with the performance of a stan-
dard OpenLDAP database. Each site GIIS was queried and
the returned LDIF inserted in to the OpenLDAP database.
It was found that with all five sites in the OpenLDAP
database, there were no problems, even with a query load
of over ten queries per second.

Introducing the BDI|I

As the standard OpenLDAP database had proved suc-
cessful in the tests, it was decided that it should be used to
replace of the top level GIIS. This was named the Berkley
Database Information Index (BDII). Periodically, the BDII
would query each site GIIS and use the returned LDIF to
populate the OpenLDAP database. A timeout was included
in the search in case a GIIS did not respond. The refresh
time for the BDII was 20mins. In this mode of operation
the BDII was viewed as a caching mechanism for the infor-
mation system and although this was not an ideal solution,
it produced stable information that could be used for testing
the other grid system components.

LCG DEPLOYMENT

LCG (LHC Computing Grid) [6], is the largest user of
the EDG middleware. The goal of LCG is to deliver the
computing infrastructure that is required by the four exper-
iments in LHC: Alice, Atlas, CMS and LHCb. The pro-
duction run will start in 2007 when the LHC accelerator is
turned on. LCG will ramp up to this production by partic-
ipating in a number of data challenges. LCG inherited the
EDG code base and is endeavouring to run a production
grid system with this code. LCG has fixed bugs found in
the software and re-engineer’s some of the code so that it
will meet the production requirements.

BDII Re-engineering

The BDII had not changed much since it had initially be
written as a test. A few small modifications were required,
however, it was decided that more time should be spent

on re-engineering the BDII and change the BDII from a
prototype to a production quality component.

The additional functionality that was added during this
re-engineering were: the automatic update of the configu-
ration and support for information provider scripts. The au-
tomatic update enables the configuration for the BDII to be
updated via a web page. The configuration contains a list of
LDAP URLs for the BDII to query. The automatic update
will check a web page for an updated version of this config-
uration. The BDII also supports information providers. If
the URL of an information provider is in the configuration
file then the BDII will run it and obtain the LDIF output.
This means that the BDII can also act as a GRIS as well as
a GlIS.

Before the re-engineered BDII was deployed in the pro-
duction system, a series of tests were conducted. These
tests had two main objectives: firstly to ensure that the
BDII was ready for the production system and secondly
to understand its limits. The tests used a dual 1GHz Intel
Pentium Il machine with 512Mb of Ram.

Performance Testing

The performance test measured the time to took to insert
information into the BDII under different query loads. In-
formation providers scripts were created by doing LDAP
searches on the LCG1 production grid and writing the out-
put to a file. A wrapper script would then print out the
contents on the file thus simulating the real information in
the grid information system. The Idapsearch was not used
directly on the GRIS due to the varying time delays that
occur when querying an MDS based grid information sys-
tem. Three different entry points to the grid information
were used: The top level (1 1.8Mb file), The regional level
(3 600k files), The site level (24 75k files). All entry points
produced the same 1.8M of information, 658 Idap entries
for 24 sites. For each test two times were measured. The
time it takes to add all the entries to an empty database and
the time it takes to update a populated database.

Table 1: No query load
Level Add | Modify
Top 20s 7s
Region | 29s 7s
Site 16s 9s

Table 2; 5 query streams

Level | Add | Modify
Top 21s 12s
Region | 40s 28s
Site 20s 15s

Table 3: 10 query streams
Level | Add | Modify
Top 24s 16s
Region | 50s 39s
Site 24s 17s

Stress Testing

The stress test involved populating the BDII whilst
simultaneously querying the database with 10 parallel
streams. The information provider used to populate the
BDII was the same the 1.8Mb file used in the performance
testes. The information provider was queried by the BDII
every 30 seconds. The BDII query load process would fork
off 10 queries and wait for them to return and then rest for
1 second before querying again. The test ran for over two
weeks, in which time over 2 million queries on the database
had be done with no corruption of the database.

BDII Deployment in LCG

The performance tests showed a difference in the BDII
population time for the different levels. This time differs
both with the size of the data and the number of streams.
There is a finite speed at which data can been added to the
database. There is also an overhead for creating the connec-
tion to the information source. From the results, it seems
that it is best either to read all the data from one source or
read small amounts of data from many sources. As such it
was decided that for deployment the top level BDII should
query each site GIIS.

The BDII was deployed in a production environment.
This showed up a few minor bugs which were fixed and
the BDII was gradually hardened to the production environ-
ment. As the number of sites reached 50, the informationin
the BDII no longer seemed to be consistent. An investiga-
tion into this showed that LDAP queries were queueing up
and due to a configurable limit in the database new queries
were being rejected. The queries were being queued due to
the time that it took to update the database. Read and write
operations were occurring simultaneously and the write op-
eration was taking so long that the number of queueing
queries would increase.

The stability of the BDII showed up some instability
within the lower levels of the information system. It was
decided that all G11Ses should be replaced by BDIIs. A site
BDII is identical to a top level BDII but a site BDII only
contains information about a site. It obtains this informa-
tion by querying the GRIS on each resource at the site.

Further BDII Improvements

The performance tests showed that there is a difference
between adding data to an empty database and updating
the database. In the BDII code, if an entry modification is
tried on an entry that does not exist, an error is generated

and the entry will have to be created. The creation of this
entry generated many calls to the database. To remove this
problem, the database would always be updated from an
empty database. The entries would be sorted by the length
of the dn and inserted shortest first. This way, the parents
will always be added before the child.

The performance test also showed that putting a query
load on the database would increase the time that it took
to update the database. This increase in time caused the
queries to queue when the number of sites reached 50. For
this reason the BDII was changed to use two databases.
One read only and one write only. When the write database
has been updated it is be swapped with the read only
database. This decouples the reads and writes from the
same database and hence removes the problem.

Site Scalability Test

The site scalability test showed how many sites the BDI|I
can support. A script was created that would populate a
slapd server with example information (17.1kb) that rep-
resented one site. This script was used to start 50 slapd
servers using different ports on one machine. The BDII
was updated and the time taken for the update measured. If
the test was successful another machine was added that also
had 50 slapd server running. The results of this test show
that the BDII can easily cope with the amount of informa-
tion produced from 1000 sites. The time taken to update
the database increases linearly with the number of sites.

60

o
o

IS
o

n
o

Time in seconds
w
(=]

o

|

o

Number of sites

Figure 2: Results of Scalability Tests

Queries

List of LDAP URLs

LDIF
From
URL

Figure 3: BDII Architecture

THE GENERIC INFORMATION
PROVIDER

The Generic Information Provider (GIP) was developed
to help LCG support multiple systems. Using the EDG in-
formation providers would require writing a new informa-
tion provider, including configuration, for each system that
had to be supported.

The GIP is a framework whereby a common configura-
tion can be used to produce the static information and dy-
namic plug-ins are used to obtain the dynamic values. The
static information is created taking values from a configura-
tion file and using a template that corresponds to the struc-
ture, create a static LDIF file. If there is no dynamic infor-
mation then the GIP will simply read the static information
and print the output to stdout. If there is a dynamic plug-
in, the GIP will run this to obtain the dynamic information
then overwrite the static value with the dynamic value when
being printed to stdout.

One of the main advantages of the GIP is that it makes
a clear separation between static and dynamic data. This
separation, along with the concept of the plug-in, enables
the GIP to be easily adapted to produce information about
any system. By using a common framework to configure
the static information, the plug-ins remain small and sys-
tem specific.

GIP Deployment in LCG

When running the dynamic plug-ins, the GIP waits for a
period of time and if the plug-in did not return it within this
period, it would return the static defaults. The results from
the deployment showed that on some systems, eg a batch
system with 500+ nodes, the dynamic plug-in would take
quite some time to run. The reason for this was that the
underlying query to the batch system was slow. A caching
mechanism was built into the GIP that would be used for all
dynamic plug-ins. The GIP forks of a process for the dy-
namic plug-in and the dynamic plug-in will write its output
to a cache. This means that if the dynamic plug-in is taking
a long time to return, the GIP can respond much quicker
by used the old information that is in the cache. There is
a timeout for the cache whereby if it is too old the static
defaults will be used.

Wrapper

Print

Fork

Read

Static Information

Figure 4: GIP Architecture

CONCLUSION

From the deployment experience in EDG and LCG,
MDS is unusable in a production environment as a grid in-
formation system. Using a standard OpenLDAP database
and a small script update the database, it is possible to build
a production quality grid information system that supports
1000 sites. This highlights a few points for successful soft-
ware development within a grid environment.

e Build on good implementations of will established
standards.

e Concentrate on the small subset of core functionality.

e Follow a good quality control procedure.

e Try an keep everything simple.

The results of the tests show that the best way of using
the BDII is for it to query many data sources. The limita-
tion on the number of sites a BDII can support is two fold.
As the BDII spawns off a process for querying each site, the
number of sites will be limited by the number of processes
that the operating system can spawn off itself. The second
limitation is the amount of data in the system, as the time
it takes will increase as the amount of data increases and
hence the period between updates will also increase. This
fundamentally means that more sites, and hence informa-
tion in the grid, the more stale the information will need to
be. This is true for all grid information systems. Even if
improvements are made to the update speed and hence the
data is made less stale, more data will always lead to stale
data.

The GIP makes it easy to support multiple systems in an
extensible way. The configuration is simplified and only
new plug-ins are required to be written to support new sys-
tems. The built in caching mechanism ensures that that the
dynamic information is always readily available and that
the freshness of this information only dependent on the un-
derlying speed of the system that is queried.

The BDII, along with the GIP, have been used to build a
production quality information system for LCG.

REFERENCES

[1] http://www.globus.org/mds

[2] http://www.openldap.org

[3] http://www.globus.org

[4] http://www.globus.org/gt2.4/

[5] http://eu-datagrid.web.cern.ch/eu-datagrid/
[6] http://lcg.web.cern.ch/LCG/

[7] Lee Momtahan and Andrew Martin, “e-Science Experiences:
Software Engineering Practice and the EU DataGrid”, in
Proc. Asia-Pacific Software Engineering Conference, IEEE
Press, 2002.

[8] F.Etienne, C.Loomis, S.Traylen, “Evaluation of Testbed Op-
eration”, DataGrid-06-D6.6-0120-1-1, EUDG, 2003.

