LHCb time-dependent results

Marta Calvi

(University of Milano Bicocca and INFN)

On behalf of the LHCb Collaboration

Outline

- Introduction
- Analysis of B \rightarrow J/ ψ X modes: first results on the CPV phase ϕ_s at LHC and related measurements.
- Flavour oscillations in $B_s \rightarrow D_s \pi$ and Δm_s measurement.
- $B_s \rightarrow K^+K^-$ lifetime measurement.

M. Calvi - FPCP 2011

LHCb

Single arm forward detector: $2 < \eta < 5$ High $b\overline{b}$ production in the forward region in pp collisions at $\sqrt{s}=7$ TeV: $\sigma_{b\overline{b}} \approx 290 \ \mu b$, but $\sigma_{inel} \approx 60 \ mb$.

LHCb detector performance:

- \triangleright Efficient trigger for leptonic and hadronic decays ($\varepsilon^{trig} \sim 94\%$ -60%)
- \triangleright Excellent resolution for tracking and vertexing ($\sigma_{IP}^{\ \ x} \approx 15 \ \mu m$)
- > Good particle identification: $\pi/K/p(RICHs)$, $\pi/e/\gamma(ECAL)$, $\mu(MUON)$

Good proper time resolution and flavour tagging power

In this talk preliminary results from analysis of ~ 36 pb⁻¹ 2010 data

Expectation for 2011 ~1 fb-1 of data

3

B_s mixing and CP violation

A CP violating phase can arise in the $B_{\rm s}$ system, from interference between decay with and without mixing.

 $B_s \rightarrow J/\psi(\mu\mu) \phi(KK)$ is the golden mode.

$$\phi_s = \Phi_M - 2\Phi_D$$

In the Standard Model ϕ_s is dominated by a single weak phase: $\phi_s^{SM} \cong -2\beta_s$

Well predicted: $\beta_{\rm S}=\arg\left(-\frac{V_{\rm ts}V_{\rm tb}^*}{V_{\rm cs}V_{\rm cb}^*}\right)$ $2\beta_{\rm s}=0.0363\pm0.0017~{\rm rad}$ Additional penguin contribution ~10-4-10-3

New Physics in mixing can enhance the measured ϕ_s : $\phi_s = \phi_s^{SM} + \phi^{NP}$

ϕ_s from $B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$

Still much space for NP to appear

- The roadmap for a new ϕ_s measurement at LHCb requires several intermediate steps, and to demonstrate good control on:
 - Signal and control channels selection
 - Proper-time measurement
 - Angular distributions
 - Flavour tagging

LHCb-CONF-2011-001, 002,003,004,005,006,010

$B \rightarrow J/\psi X$ event samples

Similar selection for all $H_b \rightarrow J/\psi(\mu\mu)X$ channels, use "decay time unbiased" di-muon trigger

Very good mass resolution.

Very low background after proper-time cut t>0.3 ps removing prompt $J/\psi \rightarrow \mu\mu$.

Increase sample ($\sim 30\%$) with events from displaced track trigger "decay time biased".

6

Time resolution and acceptance

Proper-time resolution determined from data, using background events, mainly prompt $J/\psi \rightarrow \mu\mu$.

Triple Gaussian resolution model: $\sigma \approx 50 \text{ fs}$ for $B_s \rightarrow J/\psi \phi$

→ Very good proper-time resolution.

Proper-time acceptance of the "decay time biased" sample from data:

$$\varepsilon = \frac{N_{unbiased \& biased}}{N_{unbiased}}$$

Measurement of lifetimes

Use "decay time unbiased" sample.

Will become competitive with 2011 data sample. Current systematic dominated by time dependence of reconstruction efficiency, conservative estimate.

Time dependent angular analysis

B_s \rightarrow J/ψφ decay (P \rightarrow VV) requires full angular analysis to statistically separate CP-even (ℓ =0,2) and CP odd (ℓ =1) final states.

Use θ, ϕ, ψ angles in the transversity basis.

Corrections for angular acceptance in $B_s \rightarrow J/\psi \phi$ from MC:

Normalized 1D projections of the 3D distributions

zero suppressed→

Angular acceptance effects induced by LHCb geometry, within ±5%

Polarization amplitudes for $B^0 \rightarrow J/\psi K^{0*}$

Same P \rightarrow VV structure in B⁰ \rightarrow J/ $\psi(\mu\mu)$ K^{0*}(K π) decay. Analysis used as a cross-check of the full 5D fit (m, t, ϕ , ψ , θ).

Background shape from sidebands. Non resonant S-wave K_{π} contribution 5±2 %.

Parameter	LHCb result (preliminary)	BaBar PRD 76, 031002
$ A_{\parallel} ^2$	$0.252 \pm 0.020 \pm 0.016$	$0.211 \pm 0.010 \pm 0.006$
$ A_{\perp}^{"} ^{2}$	$0.178 \pm 0.022 \pm 0.017$	$0.233 \pm 0.010 \pm 0.005$
$\delta_{\parallel}[\mathrm{rad}]$	$-2.87 \pm 0.11 \pm 0.10$	$-2.93 \pm 0.08 \pm 0.04$
$\delta_{\perp}[\mathrm{rad}]$	$3.02 \pm 0.10 \pm 0.07$	$2.91 \pm 0.05 \pm 0.03$

Good agreement with previous measurements, but not yet competitive.

$B_s \rightarrow J/\psi \phi$ untagged analysis

5D fit (m,t,ψ,θ,ϕ) assuming no CPV $(\phi_s = 0)$.

LHCb preliminary

Parameter	•	Result ± stat. ± syst.
Γ_s	=	$0.680 \pm 0.034 \pm 0.027 \mathrm{ps^{-1}}$
$\Delta\Gamma_s$	=	$0.084 \pm 0.112 \pm 0.021 \mathrm{ps^{-1}}$
$ A_0(0) ^2$	=	$0.532 \pm 0.040 \pm 0.028$
$ A_{\perp}(0) ^2$	_	$0.279 \pm 0.057 \pm 0.014$
$\cos \delta_{\parallel}$	=	$-1.24 \pm 0.27 \pm 0.09$

CDF 5.2 fb⁻¹: $\Delta\Gamma = 0.075 \pm 0.035 \text{(stat)} \pm 0.01 \text{(syst) ps}^{-1}$

Flavour tagging

B flavour at production determined by several algorithms

- Opposite Side (tag all b hadrons): μ, e, K, charge of inclusive secondary vertex
- Same Side: K (for B_s), π (for B_d , B_u)

Algorithms optimized on data for maximum tagging power: $\epsilon_{tag}(1-2\omega)^2$ (*)

using control channels.

OS and SS π :

• $B^0 \rightarrow D^{*-}\mu^+\nu$, $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{0*}$

$$ε_{tag}(1-2ω)^2 \approx 2\%$$
 OS $\approx 2.8\%$ OS+SSπ

SSK: $B_s \rightarrow D_s^- \pi$ ($\approx 1.3 k$) too small data sample to calibrate on data

Flavour tagging calibration

- Tagging power enhanced using per-event mistag probability calculated from taggers and event properties.
- Calibrated on data with B+ \rightarrow J/ ψ K+ events Validated on B0 \rightarrow J/ ψ K0*.
- Uncertainty dominated by sample size:

 \pm 0.012(stat) \pm 0.004 (syst) on intercept \pm 0.12 (stat) \pm 0.01 (syst) on slope.

Performance on $B_s \rightarrow J/\psi \phi$ (OS only)

$$\epsilon_{tag} = 17.6 \pm 1.4 \%$$
 $\omega = 32 \pm 2 \%$
 $\epsilon_{tag}(1-2\omega)^2 = 2.2 \pm 0.5 \%$

sin2β from $B^0 \rightarrow J/\psi K^0_S$

1330 events in 35 pb⁻¹ Unbiased+biased trigger. Use OS and SS π tag.

Too small data sample for a measurement competitive with B-factories, but valid demonstration of LHCb capability in time dependent CPV analysis.

$$\mathcal{A}_{J/\psi K_{\mathrm{S}}^{0}}(t) \equiv \frac{\Gamma(\overline{B}^{0}(t) \to J/\psi K_{\mathrm{S}}^{0}) - \Gamma(B^{0}(t) \to J/\psi K_{\mathrm{S}}^{0})}{\Gamma(\overline{B}^{0}(t) \to J/\psi K_{\mathrm{S}}^{0}) + \Gamma(B^{0}(t) \to J/\psi K_{\mathrm{S}}^{0})}$$
$$= S_{J/\psi K_{\mathrm{S}}^{0}} \cos(\Delta m_{d} t) - C_{J/\psi K_{\mathrm{S}}^{0}} \sin(\Delta m_{d} t)$$

LHCb preliminary

$$S_{J/\psi K_S^0} = 0.53^{+0.28}_{-0.29} \text{(stat)} \pm 0.07 \text{(syst)}$$

Main systematic from tagging calibration.

$B_s \rightarrow J/\psi \phi$ tagged analysis

757±28 events (t>0.3ps) from unbiased+biased trigger. 7D fit (m,t,tag, ω , ϕ , ψ , θ) No point-estimate, CL contours (Feldman-Cousins) in $\Delta\Gamma_s$ - ϕ_s plane.

SM p-value 22% (1.2 σ)

Projection on ϕ_s :

LHCb preliminary

 $\phi_s \in [-2.7, -0.5] \text{ rad at } 68\% \text{ CL}$

Include statistical uncertainty and systematic from tagging and Δm_s floated in the fit. All other syst. uncertainties give negligible effect on the contours.

	LHCb 36 pb ⁻¹	CDF $5.2 {\rm fb}^{-1}$
$B_s o J/\psi \phi$	836	6500
Proper time resolution	$50\mathrm{fs}$	$100\mathrm{fs}$
OS tagging power	$2.2 \pm 0.5\%$	$1.2\pm0.2\%$
SS tagging power	work ongoing	$3.5\pm1.4\%$

Improvements expected with 2011 data: x30 larger data sample and addition of SSK tag.

Preparing for world best measurement!

B_s mixing in $B_s \rightarrow D_s^-(3) \pi^+$

Combine four decay modes for a total of ~1300 signal events:

decay mode	# signal candidates
$B_s \to D_s^-(\phi \pi^-) \pi^+$	515 ± 25
$B_s \to D_s^-(K^*K)\pi^+$	338 ± 27
$B_s \to D_s^- (K^+ K^- \pi^-) \pi^+$	283 ± 27
$B_s \to D_s^- (K^+ K^- \pi^-) 3\pi$	245 ± 46

$$\sigma_{\rm m}$$
=18 MeV/c² (D_s π)

$$\sigma_m = 12.7 \text{ MeV/c}^2 \text{ (D}_s 3\pi)$$

B_s mixing in $B_s \rightarrow D_s^-(3)\pi^+$

Per-event proper-time resolution calibrated on data with prompt D_s and random π^+ :

$$<\sigma_t> = 44 \text{ fs } (D_s \pi), 36 \text{ fs } (D_s 3\pi)$$

Propertime acceptance from MC.

Per-event mistag probability as re-calibrated in the $B^0 \rightarrow D^-\pi^+$ channel:

$$\varepsilon D^2 = 3.8 \pm 2.1 \%$$
 (OS tag)

Minimum in the likelihood at $\Delta m_s \sim \! 17.6~ps^{\! \cdot 1}\,$ with 4.6 σ statistical significance

B_s mixing in $B_s \rightarrow D_s^-(3)\pi^+$

• Amplitude scan: $A=1.41 \pm 0.26$ (stat) for $\Delta m_s = 17.6$ ps⁻¹

36 pb⁻¹

t modulo $2\pi / \Delta m_s$ [ps]

Systematic uncertainties on $\Delta m_{\rm s}$			
source	$\Delta_{\Delta m_s}[\mathrm{ps}^{-1}]$		
proper time resolution $S_{\sigma_t} = [1.2 - 1.4]$	0.006		
proper time resolution model	0.001		
proper time acceptance function	0.000		
fixed parameters floating	0.003		
diff. background shape in mass fit	0.010		
phys. bkg mass templates	0.002		
variation of η and σ_t PDFs	0.026		
z-scale (0.1%)	0.018		
momentum scale (0.1%)	0.018		
$\Delta\Gamma_s = [0 - 0.2] \times \Gamma_s$	0.002		
total systematic uncertainties	0.038		

LHCb preliminary $\Delta m_s = 17.63 \pm 0.11 \; (\mathrm{stat.}) \pm 0.04 \; (\mathrm{syst.}) \; \mathrm{ps}^{-1}$

Competitive with world best (CDF, 1 fb-1):

 $\Delta m_s = 17.77 \pm 0.10 \text{ (stat.) } \pm 0.07 \text{ (syst.) ps}^{-1}$

LHCb preliminary

 $\sqrt{s} = 7 \text{ TeV}$

0.1

-0.6

-0.8

$B_s \rightarrow K^-K^+$ lifetime

Several test of SM and NP searches are possible with $B_{d,s} \rightarrow \pi K, \pi \pi, KK, pp$ decays, as CP asymmetries and γ angle masurements.

 $B_s \rightarrow K^-K^+$ decay dominated by penguin diagram. Can receive important NP contributions affecting lifetime difference: $\Delta\Gamma_s = \Gamma_L - \Gamma_H \cong \Delta\Gamma_s^{SM} \cos(\phi^{NP})$

Fitting the decay rate with a single exponential an effective lifetime is measured:

$$au^{-1}$$
KK $=rac{R_L/\Gamma_L+R_H/\Gamma_H}{R_L/\Gamma_L^2+R_H/\Gamma_H^2}$

 R_L, R_H : fraction of L,H states in the $B_s \rightarrow K^-K^+$ decay, mainly light.

Compared with a lifetime in a flavour specific final state: $\tau_{Bs}^{-1} = (\Gamma_L + \Gamma_H)/2$ can constrain $\Delta \Gamma_s / \Gamma_s$ and the NP B_s mixing phase ϕ^{NP}

B_s → K⁻K⁺ lifetime measurement

B \rightarrow hh' states well separated using π/K identification from RICHs.

Two τ measurements:

- Relative lifetime: proper-time acceptance cancelled by using the ratio to the kinematically similar decay $B_d \rightarrow K\pi$, and B_d lifetime.
- Absolute lifetime: proper-time acceptance determined from data on event-by event basis

LHCb preliminary
$$\tau_{B_s^0} = 1.440 \pm 0.096 \text{ (stat)} \pm 0.010 \text{ (syst) ps}$$

CDF: $\tau = 1.53 \pm 0.18 \pm 0.02$ ps

Interesting NP constraints will come with 2011 data

Conclusions & Prospects

- Excellent performance of LHCb in time dependent measurements proved on 2010 data.
- Preliminary result on Δm_s in $B_s \rightarrow D_s \pi$ oscillations at LHCb with 36 pb⁻¹ competitive with world best.
- Successfully completed all steps towards a ϕ_s measurement in $B_s \rightarrow J/\psi \phi$. Will allow world best result to be reached with 2011 data.
- Many other decays modes under study: $B_s \rightarrow J/\psi f_0$, $J/\psi \eta'$, $D_s^- D_s^+ \dots$ and also $B_s \rightarrow K^{0*} \overline{K^{0*}}$, $B_s \rightarrow \phi \phi$... will provide CPV measurements and constraints on penguin contributions.
- With 2011 data tagged time dependent analysis of hadronic charmed $(B_s \rightarrow D_s K)$ and charmless $(B_{d,s} \rightarrow hh')$ modes will also allow new measurements on γ angle.

backup

LHCb trigger

- LO Hardware Trigger 40 MHz → 1 MHz
 - Search for high p_T , μ , e, γ , hadron candidates

- High Level Software Trigger Farm
 - HLT1: Add Impact parameter cuts
 - HLT2: Global event reconstruction
 - Physics output rate 2 kHz 3. kHz
 - Fully operational.

First evidence of $B_s \rightarrow K^{0*}K^{0*}$

 $B_s \rightarrow K^{0*}(K^+\pi^-) \overline{K^0*}(K^-\pi^+)$ only from penguin decay. Future measurement of time-dependent CP asymmetries will probe new physics in b->s transitions.

First evidence at LHCb with 35 pb⁻¹: 34.5 \pm 7.4 events (7.3 σ)

Branching fraction with $B^0 \rightarrow J/\psi K^{0*}$ as normalization channel.

$$\mathcal{B}\left(B_s^0 \to K^{*0}\overline{K}^{*0}\right) = (1.95 \pm 0.47(stat.) \pm 0.51(syst.) \pm 0.29(f_d/f_s)) \times 10^{-5}$$

Predictions from QCD factorization: $(7.9^{+4.3}_{-3.9}) \times 10^{-6}$

$$(7.9^{+4.3}_{-3.9}) \times 10^{-6}$$

LHCb preliminary √s = 7 TeV, 36 pb¹

B⁰ mixing in B⁰ \rightarrow D⁻(K⁺ π ⁻ π ⁻) π ⁺

~ 6000 signal events.

Double Gaussian proper-time resolution model from Monte Carlo (tuned to data): $<\sigma_t>=49$ fs.

0.4 0.2 0.2 -0.4 -0.6 -0.8 SIS. t [ps]

 $\Delta m_d = 0.499 \pm 0.032 ({
m stat}) \pm 0.003 ({
m sys}) \ ps^{-1}$ ($\Delta m_d = 0.507 \pm 0.005 \ ps^{-1}$ world average, PDG [1])

$B^0 \rightarrow J/\psi K^{0*}$ and $B_s \rightarrow J/\psi \phi$ untagged

 $B^0 \rightarrow J/\psi K^{0*}$

Systematic effect	$ A_{\parallel} ^2$	$ A_{\perp} ^2$	δ_\parallel	δ_{\perp}
proper time acceptance	-	-	-	-
data/MC differences	0.008	0.006	0.07	0.05
statistical error of acceptance	0.002	0.001	-	0.01
wrong-signal fraction	0.004	0.001	-	0.01
background treatment	0.002	0.008	0.04	0.01
statistical error of background	0.008	0.005	0.02	0.01
mass model	0.010	0.002	0.01	0.01
s-wave treatment	0.001	0.013	0.05	0.05
sum	0.016	0.017	0.10	0.07

 $B_s \rightarrow J/\psi \phi$

Systematic effect	$\Gamma_s \; [\mathrm{ps}^{-1}]$	$\Delta\Gamma_s~[\mathrm{ps}^{-1}]$	$ A_{\perp}(0) ^2$	$ A_{\ }(0) ^2$	$\cos\delta_\parallel$
Proper time resolution	0.0001	-	-	-	-
Angular acceptance	-	-	-	0.0007	-
Acceptance parametrisation	0.0002	0.001	0.0017	0.0013	-
Proper time acceptance	0.0272	0.001	0.0003	0.0002	-
S-wave treatment	0.003	0.003	0.013	0.028	0.09
Background treatment	0.0002	0.02	0.0016	0.0012	-
Mass model	0.0004	0.004	0.0032	0.0006	-
Total (quadratic sum)	0.0274	0.0206	0.0136	0.0281	0.09

sin2β from $B^0 \rightarrow J/\psi K^0_S$

$$\mathcal{A}_{J/\psi K_{\mathrm{S}}^{0}}^{\mathrm{meas}}(t) = (1 - 2\omega)\mathcal{A}_{J/\psi K_{\mathrm{S}}^{0}}(t) \otimes \mathcal{R}(t)$$

Table 3: Systematic uncertainties to $S_{J/\psi K_S^0}$ in absolute terms.

Source	uncertainty
tagger calibration	0.067
per-event mistags p.d.f.	0.012
Δm_d uncertainty, z scale	0.0017
proper time resolution	0.0085
high propertime acceptance	0.00065
biased events acceptance	0.0042
biased TIS events acceptance	0.0063
production asymmetry	0.024
total (sum in squares)	0.073

WA: $\sin 2\beta = 0.673 \pm 0.023$

$B_s \rightarrow D_s \pi$ signal mistag distribution & time resolution

A_{sl}

Di-muon charge asymmetry measured by D0, giving hints of anomalous CPV in the mixing of neutral B mesons.

$$\Delta A_{fs} = \frac{a_{fs}^s - a_{fs}^d}{2} \rightarrow (2.1 \pm 0.3) \times 10^{-4} [S.M.]$$

- LHCb will measure $a_{sl}^s a_{sl}^d$ from difference in asymmetry in $B_s \rightarrow D_s(KKπ)μν$, $B^0 \rightarrow D^+(KKπ)μν$.
- Orthogonal constraint to D0.

If there is NP in B_s mixing it will be seen by LHCb also in the ϕ_s measurement

Data taking @ √s=7TeV

Running conditions with up to ~2 collisions/event more demanding than originally planned. Trigger and offline analysis well coping with it.

2011 use *luminosity levelling* to keep L<3. 10^{32} cm⁻²s⁻¹ Expect to collect ~1 fb⁻¹ by the end of the year.