Neutrino masses from new generations (in coll. with A. Aparici, N. Rius, A. Santamaría)

J. Herrero-García

IFIC, Universidad de Valencia - CSIC

08/2011

NuFact'11

Neutrinos: new physics is needed (better testable)

- Neutrino masses ($\sum m_{\nu} \lesssim 1 \text{ eV}$) \Rightarrow first hint of PBSM.
- From oscillation experiments, the possible hierarchies are:
- NH: $m_3 \approx \sqrt{| riangle m_{23}^2 |} pprox 0.05 ext{ eV \& } m_2 pprox \sqrt{ riangle m_{12}^2} pprox 0.01 ext{ eV}.$
- a IH: $m_2 pprox m_1 pprox \sqrt{\left| \bigtriangleup m_{23}^2 \right|} pprox 0.05$ eV.
- **3** Quasi-degenerate: $m_1 \simeq m_2 \simeq m_3$.
 - Lepton mixing is compatible with TBM (hint of $\theta_{13} \neq 0$):

$$U^{TBM} = \begin{pmatrix} \frac{\sqrt{2}}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

J. Herrero-García Neutrino masses from new generations 08/ 2011 2/23

Neutrinos: new physics is needed (better testable)

- Neutrino masses ($\sum m_{\nu} \lesssim 1 \text{ eV}$) \Rightarrow first hint of PBSM.
- From oscillation experiments, the possible hierarchies are:
- NH: $m_3 \approx \sqrt{| \bigtriangleup m_{23}^2 |} \approx 0.05 \text{ eV}$ & $m_2 \approx \sqrt{\bigtriangleup m_{12}^2} \approx 0.01 \text{ eV}$.
- a IH: $m_2 pprox m_1 pprox \sqrt{\left| \bigtriangleup m_{23}^2 \right|} pprox 0.05$ eV.
- **Quasi-degenerate:** $m_1 \simeq m_2 \simeq m_3$.
 - Lepton mixing is compatible with TBM (hint of $\theta_{13} \neq 0$):

$$U^{TBM} = \begin{pmatrix} \frac{\sqrt{2}}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Simple explanation: RH nus and high-scale seesaw, but...

• Hierarchy problem for O(1) Yukawas $(\delta m_H^2 \simeq m_R^2/(4\pi)^2)$.

• Difficult to test it (sterile ν_R with $m_R \sim 10^{15} \, {\rm GeV}$).

J. Herrero-García Neutrino masses from new generations 08/ 2011 2/23

Natural SM extension: new families

- Theoretically: $\beta_{QCD} < 0 \Longrightarrow n_{gen} \le 8$.
- EW fits (always with assumptions) allow 2 extra at most.
- \rightarrow A heavy Higgs would fit better with extra families.
- \rightarrow Removes tension with LEP II bound.
- \rightarrow Need further studies for the new LHC data.
 - Baryogenesis: more CPV.
 - DM: hadrons, heavy ν /singlets if stable enough.
 - Composite Higgs & dynamical EW symm. breaking:
- \rightarrow solution to hierarchy problem.
 - Might solve flavor discrepancies.
 - Tight connection with the LHC...

Severe bounds on extra families

- Direct detection, with assumptions:
- $m_{t'}$ > 450 GeV (new LHC bound, assumes t'
 ightarrow Wb)
- $m_{b'} > 385 \text{ GeV}$ (assumes $b' \rightarrow Wt$)
- with $|m_{l'} m_{b'}| \lesssim$ 80 GeV from EW fits.
 - *m_E* > 100.8 GeV
- with $|m_E m_{\nu'}| \lesssim 140$ GeV from EW fits.

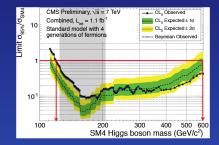
• $m_{\nu'}$:

- unstable (LEP II): 80.5 (M), 90.3 (D), 63 GeV (both).
- **2** stable (inv. *Z* width): $m_4 > 39.5$ (M), 45 (D) GeV.

J. Herrero-García Neutrino masses from new generations 08/ 2011 4/23

Severe bounds on extra families

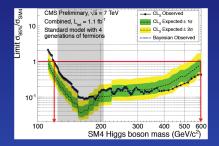
- Direct detection, with assumptions:
- $m_{t'}$ > 450 GeV (new LHC bound, assumes $t' \rightarrow Wb$)
- $m_{b'} > 385 \text{ GeV}$ (assumes $b' \rightarrow Wt$)
- with $|m_{l'} m_{b'}| \lesssim$ 80 GeV from EW fits.
 - *m_E* > 100.8 GeV
- with $|m_E m_{\nu'}| \lesssim 140$ GeV from EW fits.
 - $m_{\nu'}$:
 - unstable (LEP II): 80.5 (M), 90.3 (D), 63 GeV (both).
 - **2** stable (inv. *Z* width): $m_4 > 39.5$ (M), 45 (D) GeV.


Neutrinos at the EW scale shouldn't surprise anyone!

What seem unnatural are neutrinos with masses 13 orders of magnitude smaller than the EW scale!

J. Herrero-García Neutrino masses from new generations 08/ 2011 4/23

New very stringent limits on a 4G Higgs


H-G-G vertex enhanced by 3 (5) for a fourth (fifth) family.
 B_r^{4/5 G} can be very different from B_rSM & change the results.

J. Herrero-García Neutrino masses from new generations 08/ 2011 5/23

New very stringent limits on a 4G Higgs

H-G-G vertex enhanced by 3 (5) for a fourth (fifth) family.
 B_r^{4/5 G} can be very different from B_rSM & change the results.

New families with simple Higgs are really being pushed...

- 120 < m_H^{4G} < 600 GeV excl. (95% C.L.). Combined result soon. 114.4 − 120, ≥ 600 GeV still allowed.
- If H_{4G} excluded, are there ways out? Extended scalar sector? Strongly coupled? Composite? Exotic B_r?

J. Herrero-García Neutrino masses from new generations 08/ 2011 5/23

A new SM family and a ν_R with Majorana mass m_R (Petcov et al., Babu et al., Grimus et al., Choudhury et al.)

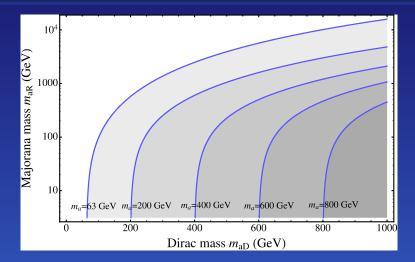
New generation leptons E, ν_E and a singlet ν_R:

$$\mathcal{L} \supset \overline{\ell} Y_e e_R \phi + \overline{\ell} Y_\nu \nu_R \widetilde{\phi} + \frac{1}{2} m_R \overline{\nu_R^c} \nu_R + \text{H.c.}$$

with:

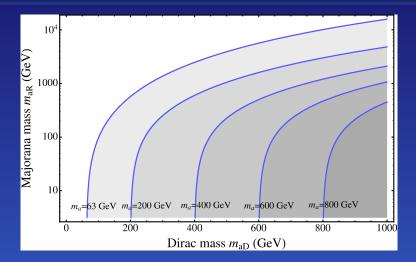
$$Y_{\nu} = (\begin{array}{cc} y_{e}\epsilon & y_{\mu}\epsilon & y_{\tau}\epsilon & y_E \end{array})^{T}$$
 where $\epsilon \ll 1$

We rotate to mass basis:


 $\rightarrow \nu_{\alpha} = \sum_{i} V_{\alpha i} \nu'_{i}$, with $i = 1, ..., 4, \alpha = e, ..., E$.

• Two massive states at tree level $(m_D \approx y_E v)$:

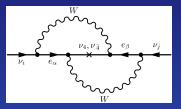
$$m_{4,ar{4}} = rac{1}{2}(\sqrt{m_R^2 + 4m_D^2 \mp m_R}) \gtrsim 63\,{
m GeV} \longrightarrow y_E pprox {\cal O}(1)$$


J. Herrero-García Neutrino masses from new generations 08/ 2011 6/23

Lepton number violating scale so $m_4 > 63$ GeV

J. Herrero-García Neutrino masses from new generations 08/ 2011 7/23

Lepton number violating scale so $m_4 > 63$ GeV

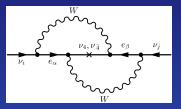


So the Majorana mass is bounded from above: $m_R < 20 \text{ TeV}$

J. Herrero-García Neutrino masses from new generations 08/ 2011 7/23

The two-loop contribution to m_{ν}

- Automatically, at tree level $m_{\nu} = 0$.
- However, at two loops light neutrino masses are generated:



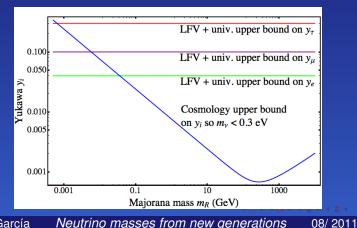
$$M_{ij} = \frac{g^4}{M_W^4} m_D^2 m_R \sum_{\alpha} V_{i\alpha} V_{4\alpha} m_{\alpha}^2 \sum_{\beta} V_{j\beta} V_{4\beta} m_{\beta}^2 (-I_{\alpha\beta})$$

J. Herrero-García Neutrino masses from new generations 08/ 2011 8/23

The two-loop contribution to m_{ν}

- Automatically, at tree level $m_{\nu} = 0$.
- However, at two loops light neutrino masses are generated:

$$M_{ij} = \frac{g^4}{M_W^4} m_D^2 m_R \sum_{\alpha} V_{i\alpha} V_{4\alpha} m_{\alpha}^2 \sum_{\beta} V_{j\beta} V_{4\beta} m_{\beta}^2 (-I_{\alpha\beta})$$


Huge hierarchies between masses:

$$rac{m_2}{m_3} \lesssim rac{1}{4y_E^2} \left(rac{m_{ au}}{m_E}
ight)^2 \left(rac{m_{ au}}{m_{ar 4}}
ight)^2 \lesssim 10^{-7}$$
: ruled-out as main mech.

J. Herrero-García Neutrino masses from new generations 08/ 2011 8/23

The two-loop contribution is relevant

- When a new gen, and a ν_B with $m_B \leq \mathcal{O}(10)$ TeV is added to the SM, the two-loop cont. to m_{ν} , although by itself it cannot explain the neutrino spectrum, is always present.
- In general, it places an important constraint in the $y_i m_B$ plane so $m_{\nu i} \lesssim 0.3 \,\mathrm{eV}$.

J. Herrero-García Neutrino masses from new generations • In a 4 gen. plus a ν_{Ri} per gen. context ...

 \rightarrow Majorana masses to SM light ν via a high-scale see-saw (type I) seems a natural explanation.

- If ν_{Ri} (with i ≠ 4) have large Majorana masses M, even if we set at tree level m_{4R} ≡ m_R = 0 so ν_E is Dirac, m_R is gen. at two loops: m_R ≈ ε²M/(2⁷π⁴), in the TeV range for natural values (must be < 20 TeV, so m₄ > 63 GeV).
- Therefore, it is not natural that if SM ν are Majorana via see-saw, ν_E is Dirac.
- So, again, the constraint in the y_i m_R plane is present, so the tree level + two-loop + ... contribution correctly reproduces the spectrum.

J. Herrero-García Neutrino masses from new generations 08/ 2011 10/23

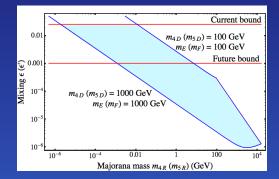
The five generation model (two new complete gens.)

$$Y_{\nu} = \left(\begin{array}{ccc} y_{E} \epsilon & y_{E} \epsilon & -y_{E} \epsilon & y_{E} & 0\\ 0 & y_{F} \epsilon' & y_{F} \epsilon' & 0 & y_{F} \end{array}\right)' \text{ with } \epsilon, \epsilon' \ll 1.$$

Rotation to mass basis in NH (now $m_{4D} \approx y_E v \& m_{5D} \approx y_F v$):

$$V \approx \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 & \epsilon & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} & \epsilon & \epsilon'\\ \sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} & -\epsilon & \epsilon'\\ 0 & -\sqrt{3}\epsilon & 0 & 1 & 0\\ 0 & 0 & -\sqrt{2}\epsilon' & 0 & 1 \end{pmatrix} + \mathcal{O}(\epsilon^2) \to \mathsf{TBM}$$

At tree level: $m_{4,\bar{4}(5,\bar{5})} = \frac{1}{2} \left(\sqrt{m_{4R(5R)}^2 + 4m_{4D(5D)}^2} \mp m_{4R(5R)} \right)$. At two loops:


J. Herrero

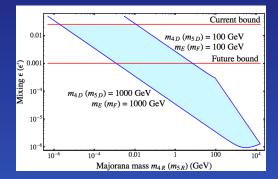
$$m_{2(3)} \approx \frac{g^4 \epsilon^2(')}{(4\pi)^4 M_W^4} m_{4D(5D)}^2 m_{4R(5R)} m_{E(F)}^2 \log\left(\frac{m_{E(F)}}{m_{\bar{4}(\bar{5})}}\right)$$

o-García Neutrino masses from new generations 08/ 2011 11/2

Parameter space for correct mass scale & ratio

$${
m NH} o rac{m_2}{m_3} pprox rac{\epsilon^2 m_{4D}^2 \, m_{4R} \, m_E^2}{\epsilon'^2 m_{5D}^2 \, m_{5R} \, m_F^2}$$

Degenerate scenario not viable. Bounds by $\mu e \gamma \& \mu e \text{ conv.}$



J. Herrero-García Neutrino masses from new generations 08/ 2011 12/23

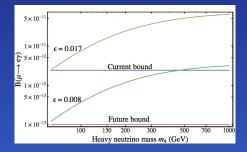
Parameter space for correct mass scale & ratio

$$\text{NH} \to \frac{m_2}{m_3} \approx \frac{\epsilon^2 m_{4D}^2 \, m_{4R} \, m_E^2}{\epsilon'^2 m_{5D}^2 \, m_{5R} \, m_F^2}$$

Degenerate scenario not viable. Bounds by $\mu e \gamma \& \mu e \text{ conv.}$

To have right neutrino masses and testability in LFV exp.: Better PD, with $m_R < O(1)$ GeV. Otherwise, same-sign leptons.

J. Herrero-García Neutrino masses from new generations 08/ 2011 12/23


Universality and LFV

Universality. For example, pion decay, gives:

$$\frac{\Gamma(\pi \to e\nu_{e})}{\Gamma(\pi \to \mu\nu_{\mu})} \approx \frac{m_{e}^{2}(m_{\pi}^{2} - m_{e}^{2})^{2}}{m_{\mu}^{2}(m_{\pi}^{2} - m_{\mu}^{2})^{2}} \frac{1 - |V_{e4}|^{2} - |V_{e5}|^{2}}{1 - |V_{\mu4}|^{2} - |V_{\mu5}|^{2}} (1 + \delta R_{e,\mu}) =$$

 $= (1.23 \pm 0.004) \cdot 10^{-4} \longrightarrow \epsilon' < 0.04 (\text{NH}) (90\% \text{ C.L.})$

• LFV: new MEG bound $B(\mu \rightarrow e\gamma) < 2.4 \cdot 10^{-12}$.

Currently $\epsilon \leq 0.02$. Future μe conv. at $\sim 10^{-16}$: $\epsilon \approx O(10^{-3})$. J. Herrero-García Neutrino masses from new generations 08/ 2011 13/23

Lepton number violation

• $0\nu\beta\beta$ current bounds constrain $\langle M_N \rangle > 10^8 \, \text{GeV}$:

$$\langle M_N \rangle^{-1} = \sum_N U_{eN}^{T2} M_N^{-1} = \epsilon^2 \frac{m_{4R}}{m_{4D}^2}$$

$$ightarrow \epsilon^2 m_{4R}/m_{4D}^2 \lesssim 10^{-8}\,{
m GeV^{-1}}$$

 \rightarrow However, having the right m_{ν} is a stronger bound. Not relevant new heavy contribution.

Same-sign leptons at colliders, for instance:

- $q\bar{q} \rightarrow Z \rightarrow \nu_4 \nu_4$ and then $\nu_4 \rightarrow W^{\mp} \ell^{\pm}$, for $\epsilon, \epsilon' < 10^{-4}$ and $m_R > 1$ GeV: complementary to LFV.
- $q\bar{q'} \rightarrow W^{\pm} \rightarrow \nu_{4,\bar{4}}E^{\pm} \rightarrow E^{\pm}E^{\pm}W^{\mp}$ for $m_E < m_4$.

• $gg \rightarrow H \rightarrow \nu_4 \nu_4 \rightarrow \ell^{\pm} \ell^{\pm} W^{\mp} W^{\mp}$. Unusual *H* signal.

ightarrow For $\ell_i^{\pm} \ell_j^{\pm}$, no missing E_T . For $m_E < m_4$ and $E^{\pm} E^{\pm}$, depending on τ_E : same-sign light di-leptons, displaced vertex... J. Herrero-García Neutrino masses from new generations 08/ 2011 14/23

Summary & conclusions

- Important connection between ν & new families.
- LHC will confirm or exclude.
- Small m_{ν} are natural with new **complete families** (with ν_R). $m_R < 20$ TeV necessary.
- *v* mass-less at tree level, acquire masses at two loops.
- Simplest 4 family model cannot reproduce spectrum.
- However, important constraint on 4 gen. models from the two-loop contribution so $m_{\nu i} \lesssim 0.3 \, {\rm eV}$.
- m_{4R} is generated if $m_{iR} \neq 0$, so ν_E is naturally Majorana.
- Model with five generations:

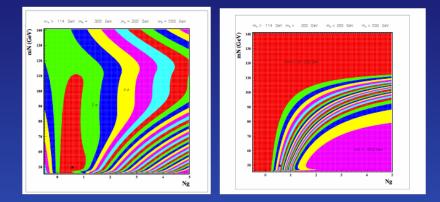
 \rightarrow Predict NH or IH. TBM can be accommodated easily. \rightarrow Model is being tested: ν sector, LFV, $0\nu\beta\beta$, same-sign leptons & specially at the LHC new particles & Higgs physics.

New families... dead or alive?

• Terrific performance of the LHC \implies stringent limits:

→ excluded range for a 4G Higgs: $120 < m_{4G} < 600$ GeV! → new quarks (assuming $t' \rightarrow Wb$): $m_{t'} > 450$ GeV!

- In addition "intriguing fluctuations" (R. Heuer) for low mass SM Higgs... without 4G enhancement ($\sigma_{4G}^{H} \approx 9 \sigma_{SM}^{H}$).
- The situation is really tight, in particular with a Higgs.
- If new families exist & a H_{4G} is excluded... extended scalar sector? new strong &/or composite EWSB sector? Need further studies.
- Just extra SM-like families with the minimal Higgs content of the SM seem to be sick... (but not yet dead).

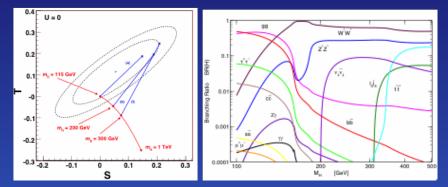


J. Herrero-García Neutrino masses from new generations 08/ 2011 16/23

BACK-UP SLIDES

J. Herrero-García Neutrino masses from new generations 08/ 2011 17/23

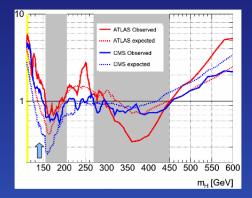
How many extra families are allowed?



(Novikov et al.)

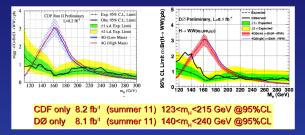
Need new fits with new Higgs & t', b' data.
They are model-dependent: mixing, ν nature, degenerate new particles, only SM Higgs (no condensate)...
J. Herrero-García Neutrino masses from new generations 08/ 2011 18/23

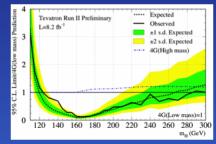
More on electroweak fits (Kribs et al.)


Higher Higgs mass allowed with extra generations!

$m_{ u} = 100, m_E = 155$	m _U	m _D	ΔS	ΔT
а	310	260	0.15	0.19
b	320	260	0.19	0.20
f	400	325	0.21	0.25

J. Herrero-García Neutrino masses from new generations 08/ 2011 19/23


New SM data bounds from LHC



• Looking forward to seeing the combined result...

J. Herrero-García Neutrino masses from new generations 08/ 2011 20/23

New 4G data bounds from Tevatron

• $124 < m_h^{4G} < 286$ GeV excluded. J. Herrero-García Neutrino masses from new generations 08/ 2011 21/23

The neutrino mass two-loop integral

$$\begin{split} I_{kn} &= \int \frac{d^4 p}{(2\pi)^4} \int \frac{d^4 q}{(2\pi)^4} \frac{p \cdot q}{(p^2 - m_k^2)(q^2 - m_n^2)((p+q)^2 - m_1^2)((p+q)^2 - m_2^2)} \times \\ & \times \left[\frac{1}{p^2 q^2} - \frac{3}{4} \frac{1}{(p^2 - M_W^2)(q^2 - M_W^2)} \right] \end{split}$$

If we take $m_{E,F} \gg m_{\bar{4},\bar{5}} > m_W$, we obtain:

$$I_{0} \approx -\frac{1}{2^{10}\pi^{4}m_{4}^{2}} \ln \frac{m_{4}^{2}}{m_{4}^{2}}, \qquad k, n = e, \mu, \tau$$
$$I_{E} \approx -\frac{1}{2^{10}\pi^{4}m_{E}^{2}} \ln \frac{m_{E}^{2}}{m_{4}^{2}}, \qquad k \text{ and/or } n = E$$
$$I_{F} \approx -\frac{1}{2^{10}\pi^{4}m_{F}^{2}} \ln \frac{m_{F}^{2}}{m_{5}^{2}}, \qquad k \text{ and/or } n = F$$

J. Herrero-García Neutrino masses from new generations 08/ 2011 22/23

Yukawa structure in IH

$$Y_{\nu} = \begin{pmatrix} -2y_{E}\epsilon & y_{E}\epsilon & -y_{E}\epsilon & y_{E} & 0\\ y_{F}\epsilon' & y_{F}\epsilon' & -y_{F}\epsilon' & 0 & y_{F} \end{pmatrix}^{T}$$

 $\epsilon, \epsilon' \ll 1$, so $m_{4D} \approx y_E v \& m_{5D} \approx y_F v$. Rot. to mass basis (IH):

$$V \approx \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 & -2\epsilon & \epsilon' \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} & \epsilon & \epsilon' \\ \sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} & -\epsilon & -\epsilon' \\ \sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} & -\epsilon & -\epsilon' \\ \sqrt{6\epsilon} & 0 & 0 & 1 & 0 \\ 0 & -\sqrt{3}\epsilon' & 0 & 0 & 1 \end{pmatrix} + \mathcal{O}(\epsilon^2) \to \mathsf{TBM}!$$

Light neutrino masses are:

$$m_{1(2)} \approx \frac{g^4 \epsilon^2(')}{(4\pi)^4 M_W^4} m_{4D(5D)}^2 m_{4R(5R)} m_{E(F)}^2 \log\left(\frac{m_{E(F)}}{m_{\tilde{4}(\tilde{5})}}\right)$$

J. Herrero-García Neutrino masses from new generations 08/ 2011 23/23