GM feedback and GM effect detection

<u>Y. Renier</u> ,J. Pfingstner, K. Artoos,D. Schulte, R. Tomas (CERN) A. Jeremie (LAPP)

> CLIC Workshop 2013 30 of January 2013

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

GM feedback and GM effect detection

Y. Renier

ntroduction

Simulation Results

Headlines

Introduction

Cases studied

Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier

Introduction Cases studied Simulation Results Conclusion and Plan

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Headlines

Introduction

Cases studied

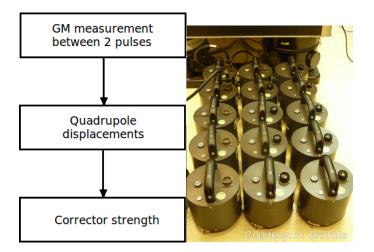
Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier

Introduction


Cases studied

Simulation Results

Conclusion and Plan

・ロト・日本・モート ヨー うへの

Concept of Feed Forward with GM Sensors

GM feedback and GM effect detection

Y. Renier

Introduction

Cases studied Simulation Results Conclusion and Plan

・ロト・日本・モート ヨー うへの

Goal and motivation of the ATF2 experiment

Goal

 Detect Ground Motion (GM) effect on beam trajectory.

Motivation

- GM sensors are usually only compared to other GM sensors
- It would demonstrate possibility to make a feed forward with GM sensors.
- Feed forward would allow trajectory correction based on GM measurements in CLIC.
- Feed forward would allow big saving (avoid quadrupole stabilization in CLIC)

GM feedback and GM effect detection

Y. Renier

Introduction

Cases studied

Simulation Results

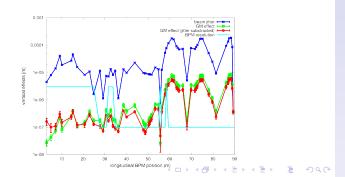
Algorithm

Algorithm - Each Pulse

- Remove incoming jitter from BPM measurements (first 5 SVD modes).
- Evaluate GM effect on BPM readings from GM sensor measurements (minus the part removed by jitter subtraction).
- Compare these two residuals.

GM feedback and GM effect detection

Y. Renier


Introduction

Cases studied

Algorithm

Algorithm - Each Pulse

- Remove incoming jitter from BPM measurements (first 5 SVD modes).
- Evaluate GM effect on BPM readings from GM sensor measurements (minus the part removed by jitter subtraction).
- Compare these two residuals.

GM feedback and GM effect detection

Y. Renier

Introduction

Cases studied

onclusion and

Simulation Parameters

Conditions

- ATF2 nominal lattice (sextupoles off).
- Elements misaligned initially (RMS=100µm).
- Trajectory is then steered.
- Ground Motion (GM) model based on measurements.
- Elements are displaced by the amount of relative motion compared with the 1st element.
- Incoming beam jitter.
- Quadrupoles errors of $\frac{dK}{K} = 10^{-4}$ included.
- BPM resolution included.
- GM measurement included (sensors TF included).

GM feedback and GM effect detection

Y. Renier

Introduction

Cases studied

Simulation Results

Headlines

Introduction

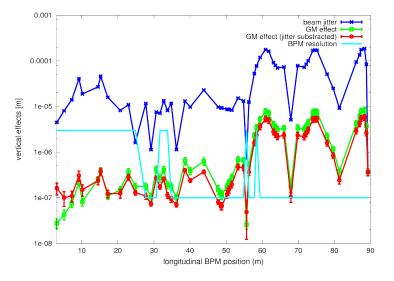
Cases studied

Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier


ntroduction

Cases studied

Simulation Results

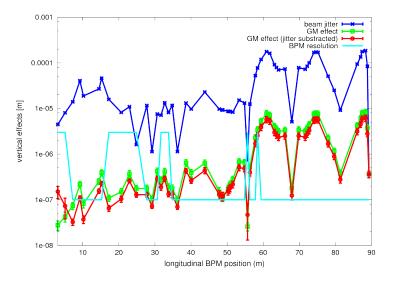
Conclusion and Plan

Nominal Lattice

GM feedback and GM effect detection

Y. Renier

ntroduction


Cases studied

Simulation Results

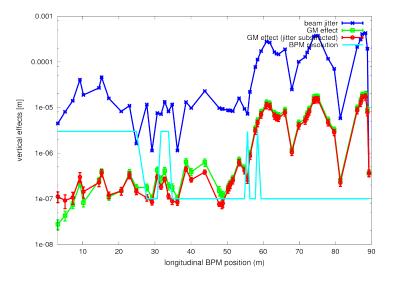
Conclusion and Plan

・ロト・日本・モート ヨー うへの

Nominal Lattice with 5 Improved BPMs

GM feedback and GM effect detection

Y. Renier


ntroduction

Cases studied

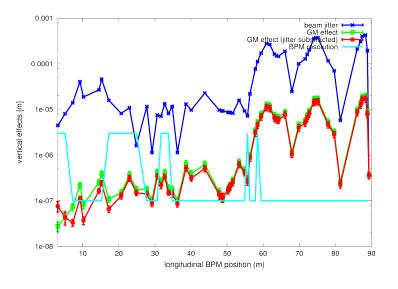
Simulation Results

Conclusion and Plan

Ultra Low β Lattice

GM feedback and GM effect detection

Y. Renier


ntroduction

Cases studied

Simulation Results

Conclusion and Plan

Ultra Low β Lattice with 5 Improved BPMs

GM feedback and GM effect detection

Y. Renier

ntroduction

Cases studied

Simulation Results

Conclusion and Plan

Headlines

Introduction

Cases studied

Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier

ntroduction

Cases studied

Simulation Results

Conclusion and Plan

Evaluation of the results

- R₁ is the GM effect obtained from GM sensors.
- R₂ is the GM effect obtained from BPMs.

$$p = rac{||R_1 - R_2||_2}{||R_1 + R_2||_2}$$

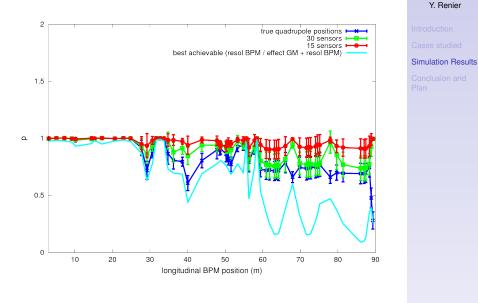
- p = 1 if R_1 and R_2 independent.
- p = 0 if $R_1 = R_2$ (ideal case).

.

The lower p is, the best is the determination from the GM sensors.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

GM feedback and GM effect detection

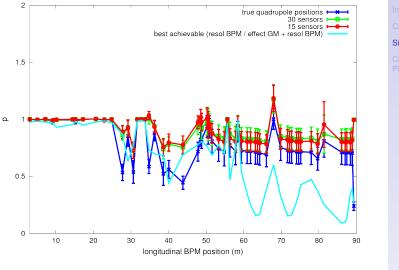

Y. Renier

ntroduction

Cases studied

Simulation Results

Nominal Lattice (X)



・ロト・日本・日本・日本・日本・日本

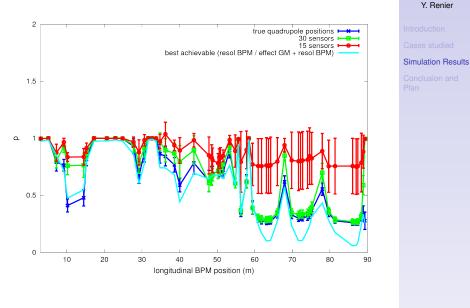
GM feedback and

GM effect detection

Nominal Lattice (Y)

▲□▶▲□▶▲□▶▲□▶ □ のへで

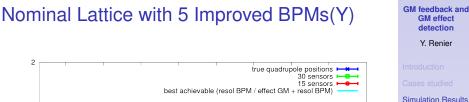
GM feedback and GM effect detection

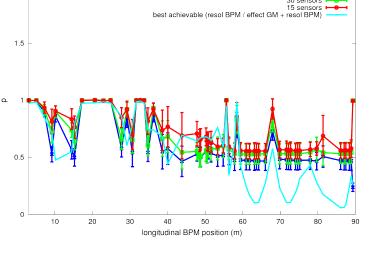

Y. Renier

ntroduction

Cases studied

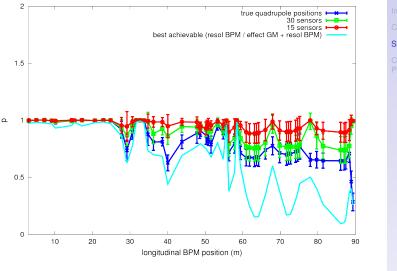
Simulation Results


Nominal Lattice with 5 Improved BPMs(X)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

GM feedback and

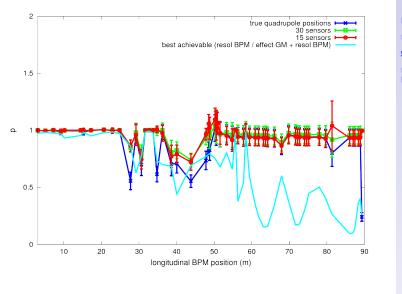

GM effect detection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Ultra Low β Lattice(X)

・ロト・日本・日本・日本・日本・日本

GM feedback and GM effect detection


Y. Renier

ntroduction

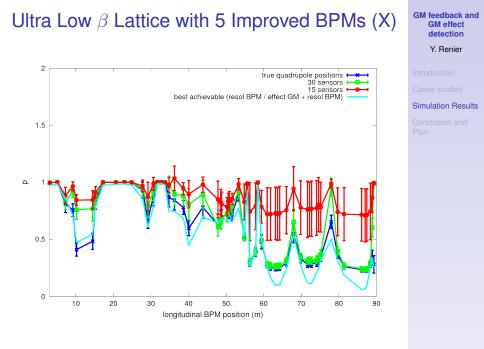
Cases studied

Simulation Results

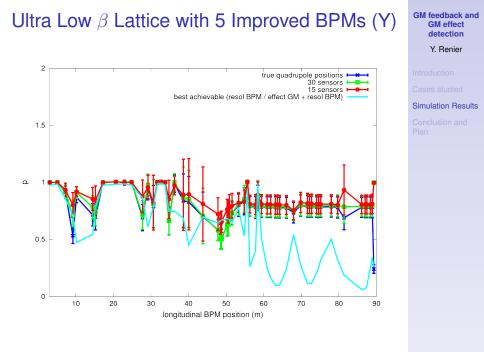
Ultra Low β Lattice(Y)

GM feedback and GM effect detection

Y. Renier


ntroduction

Cases studied


Simulation Results

Conclusion and Plan

・ロト・日本・モート ヨー うへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

・ロト・西ト・ヨト ・ヨー シタの

Results Summary

	p_x in MQ	p_x in FF
Nominal	0.9 ± 0.1	0.85 ± 0.1
Ultra Low	0.9 ± 0.1	$\textbf{0.85}\pm\textbf{0.1}$
Nominal (good BPMs)	$\textbf{0.8} \pm \textbf{0.15}$	$\textbf{0.7}\pm\textbf{0.2}$
Ultra Low (good BPMs)	$\textbf{0.8} \pm \textbf{0.15}$	$\textbf{0.7}\pm\textbf{0.2}$

GM feedback and GM effect detection

Y. Renier

ntroduction

Cases studied

Simulation Results

Conclusion and Plan

	p_y in MQ	p_y in FF
Nominal	0.75 ± 0.1	$\textbf{0.8}\pm\textbf{0.1}$
Ultra Low	0.75 ± 0.1	0.9 ± 0.1
Nominal (good BPMs)	0.75 ± 0.2	0.55 ± 0.1
Ultra Low (good BPMs)	0.75 ± 0.2	$\textbf{0.7}\pm\textbf{0.1}$

MQ = Matching Quadrupoles

Headlines

Introduction

Cases studied

Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier

ntroduction

Cases studied

Simulation Results

Conclusion and Plan

▲□▶▲□▶▲□▶▲□▶ □ のへで

Conclusion & Plan

Conclusion

- Beam jitter subtraction is critical.
- Detection seems difficult but should be feasible with the current configuration.
- Great improvement with the 5 first BPMs upgraded.
- Ultra Low β does not help (limited by jitter subtraction)

Plan

- 15 sensors available and acquisition system is ready.
- Testing is ongoing.
- Then ship everything to ATF.
- Measurements at ATF2 this year.

GM feedback and GM effect detection

Y. Renier

Introduction Cases studied Simulation Results