Plan of the lectures:

An introduction to flavour physics

Phenomenology of B and D decays
 Time evolution and time-dependent asymmetries of B_{d,s}
 CPV in B_s mixing
 Time-dependent studies of "penguin modes"
 CPV in charged B decays [measuring γ]
 Rare B decays
 Exclusive rare B decays
 CP violation in the charm system
 The puzzle of Δa -

The puzzle of Δa_{CP}

Flavour physics beyond the SM

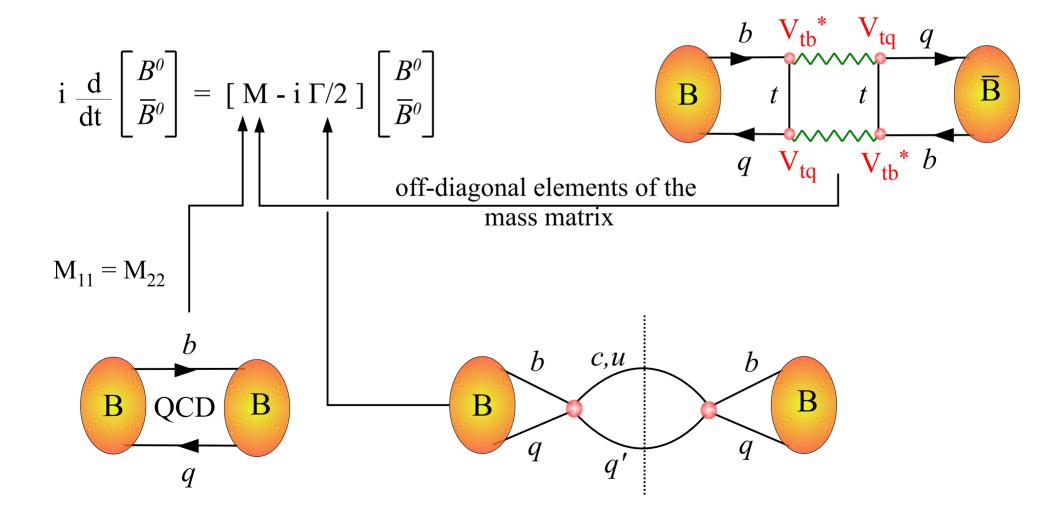
\triangleright <u>Time evolution and time-dependent asymmetries of $B_{d,s}$ </u>

 $B_{d,s}$ mass eigenstates: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle = |B_H\rangle = p|\overline{B}^0\rangle + q|B^0\rangle$

$$i \frac{d}{dt} \begin{bmatrix} B^{0} \\ \overline{B}^{0} \end{bmatrix} = [M - i \Gamma/2] \begin{bmatrix} B^{0} \\ \overline{B}^{0} \end{bmatrix}$$

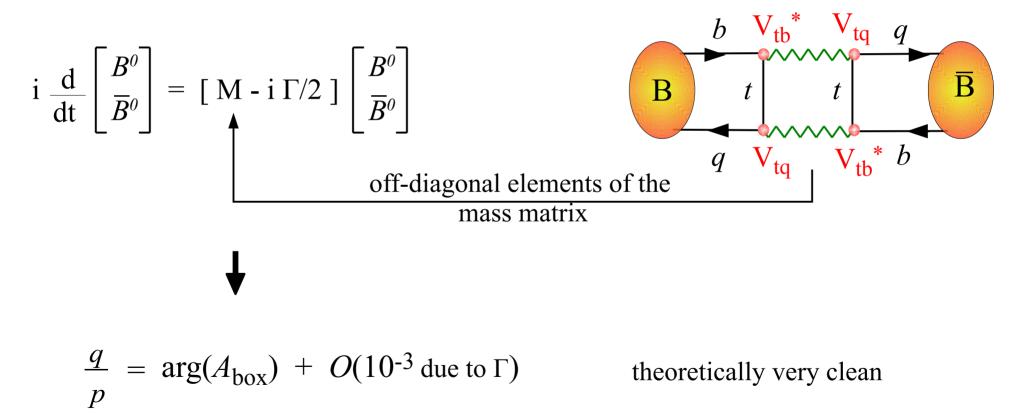
The time evolution can be described in full generality by means of a non-Hermitian Hamiltonian \triangleright Time evolution and time-dependent asymmetries of $B_{d,s}$

 $B_{d,s}$ mass eigenstates: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle = |B_H\rangle = p|\overline{B}^0\rangle + q|B^0\rangle$



<u>Time evolution and time-dependent asymmetries of B_{d.s}</u>

 $B_{d,s}$ mass eigenstates: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle = |B_H\rangle = p|\overline{B}^0\rangle + q|B^0\rangle$

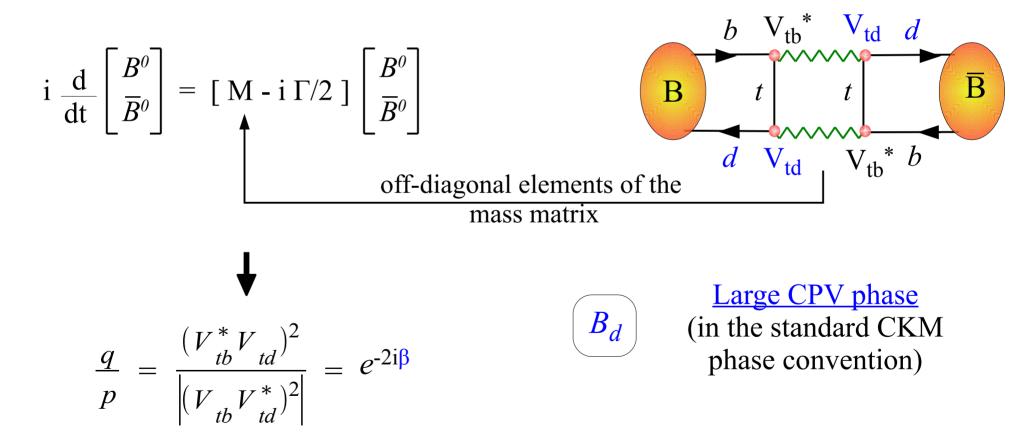


 $\Delta m_{\rm B} \propto |A_{\rm box}| \times |\langle \bar{\rm B}| (\bar{b}_L \gamma_{\mu} q_L)^2 |{\rm B} \rangle|$

O(10%-30%) theory error

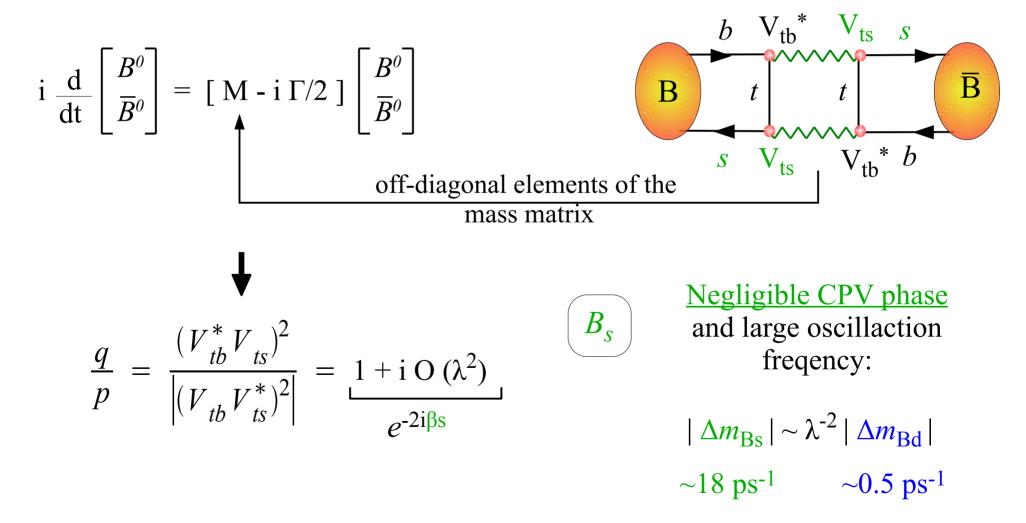
*<u>Time evolution and time-dependent asymmetries of <i>B*_{d,s}</u>

 $B_{d,s}$ mass eigenstates: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle = |B_H\rangle = p|\overline{B}^0\rangle + q|B^0\rangle$

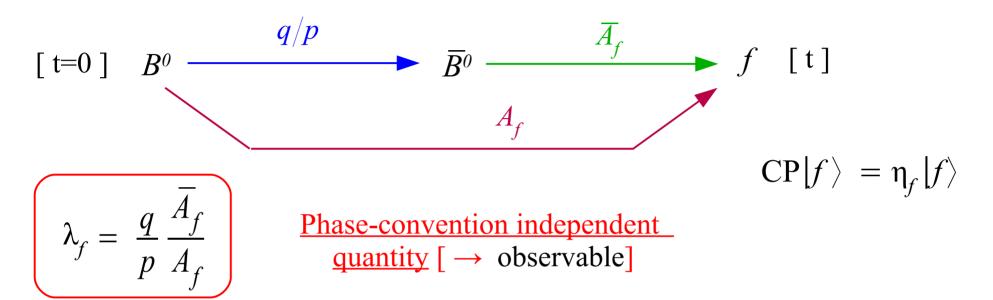


<u>Time evolution and time-dependent asymmetries of B_{d,s}</u>

 $B_{d,s}$ mass eigenstates: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle = |B_H\rangle = p|\overline{B}^0\rangle + q|B^0\rangle$



The study of time-dependent decays of neutral B into CP eigenstates is a marvelous tool to extract CPV phases in a clean way:

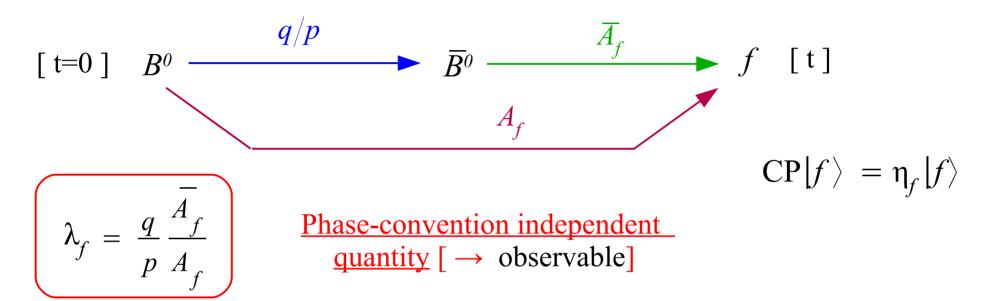


If $|\lambda_f| = 1$ (i.e. if A_f is dominated by a single weak phase) & $\Delta \Gamma = 0$ then :

$$\Gamma(B^{0}(t) \to f) \propto e^{-\Gamma_{B}t} \left[1 - \eta_{f} \operatorname{Im}(\lambda_{f}) \sin(\Delta m_{B}t) \right]$$

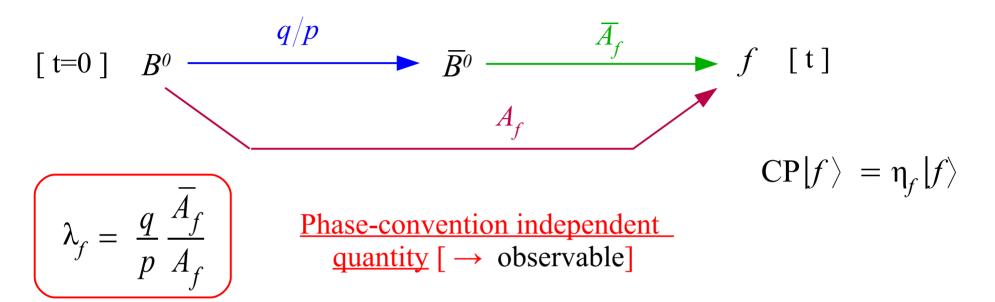
$$\Gamma(\bar{B}^{0}(t) \to f) \propto e^{-\Gamma_{B}t} \left[1 + \eta_{f} \operatorname{Im}(\lambda_{f}) \sin(\Delta m_{B}t) \right]$$

The study of time-dependent decays of neutral B into CP eigenstates is a marvelous tool to extract CPV phases in a clean way:



If $|\lambda_f| = 1$ (i.e. if A_f is dominated by a single weak phase) & $\Delta\Gamma \neq 0$ then : $\Gamma(B^0(t) \to f) \propto e^{-\Gamma_B t} \left[e^{\Delta\Gamma t/2} (1+c_f) + e^{-\Delta\Gamma t/2} (1-c_f) - \eta_f s_f \sin(\Delta m_B t) \right]$ $s_f = \operatorname{Im}(\lambda_f) \quad c_f = \operatorname{Re}(\lambda_f)$

The study of time-dependent decays of neutral B into CP eigenstates is a marvelous tool to extract CPV phases in a clean way:



If $|\lambda_f| = 1$ (i.e. if A_f is dominated by a single weak phase) & $\Delta \Gamma \neq 0$ then :

$$\Gamma(B^0(t) \to f) \propto e^{-\Gamma_B t} \left[e^{\Delta \Gamma t/2} (1 + c_f) + e^{-\Delta \Gamma t/2} (1 - c_f) - \eta_f s_f \sin(\Delta m_B t) \right]$$

Key points to successfully use this method: $s_f = \text{Im}(\lambda_f)$ $c_f = \text{Re}(\lambda_f)$

- [EXP]: <u>flavour tagging</u> and <u>time-dependent resolution</u> are essential ingredients
- [TH]: identify final states such that A_f is dominated by a single weak phase

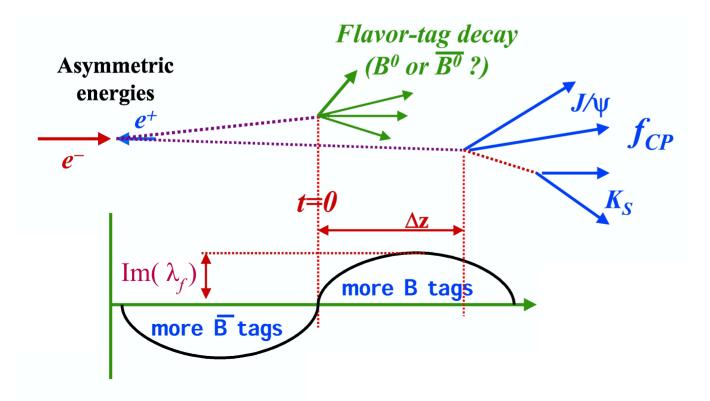
A few words about flavour tagging: B factories vs. hadron colliders

B factories:

$$e^+ + e^- \rightarrow \Psi(4S) \rightarrow B \overline{B}$$

• clean environment [$\sigma(B) / \sigma(bkg) \sim 0.3$]

low stat. [~ 10⁸ B pairs / 100 fb⁻¹]
no B_s [unless running at higher energies with lower luminosity]

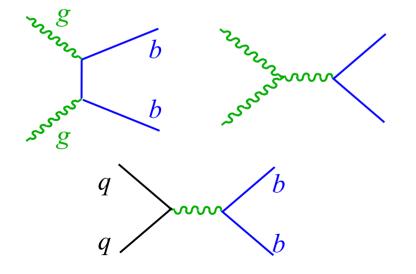


A few words about flavour tagging: B factories vs. hadron colliders

B factories:

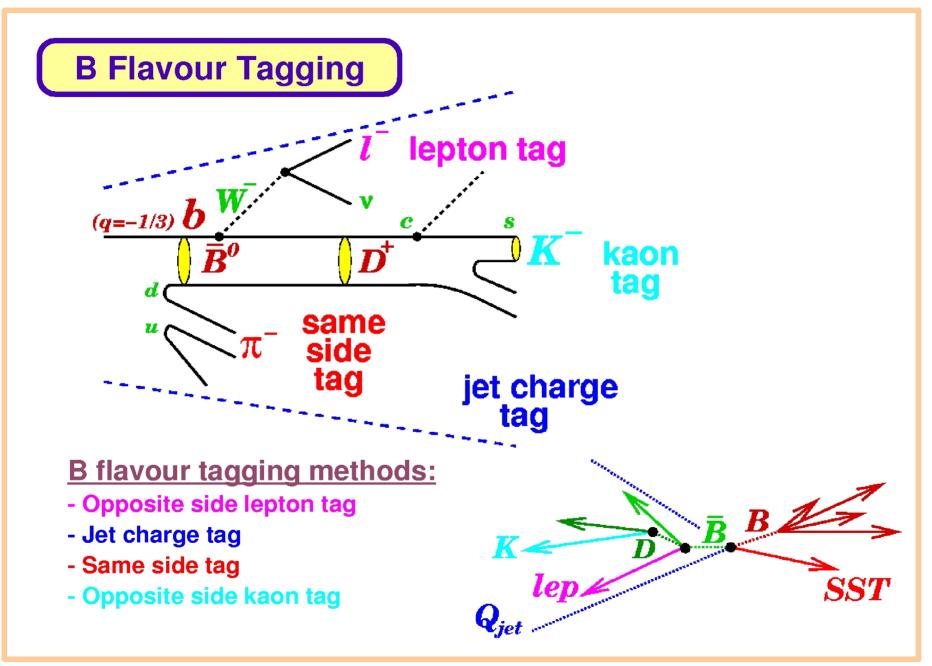
$$e^+ + e^- \rightarrow \Psi(4S) \rightarrow B \overline{B}$$

Hadron colliders:



- clean environment [$\sigma(B) / \sigma(bkg) \sim 0.3$]
- coherent quantum state for neutral B
- low stat. [~ 10⁸ B pairs / 100 fb⁻¹]
 no B_s [unless running at higher energies with lower luminosity]

- dirty environment [$\sigma(B) / \sigma(bkg) < 0.01$]
- incoherent quantum state
- high stat. [$\sim 10^{12}$ B pairs / 1 fb⁻¹]
- all hadrons with b-quarks produced

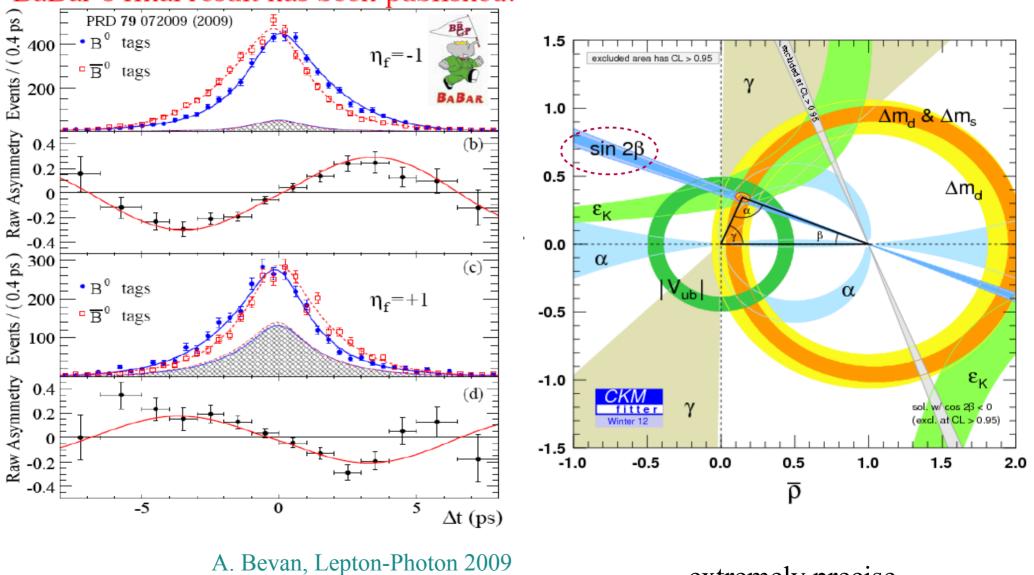


flat triangle

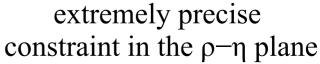
Golden channel for B factories

When is A_f dominated by a single weak phase? $|B_{d}\rangle \rightarrow |\psi K_{S}\rangle$ $[b+d \rightarrow c\bar{c}s+d]$ V_{ub} c,t $g(\gamma, Z)$ С $O(\alpha_s \lambda^5)$ real $O(\lambda^2)$ real O($\alpha_{\rm s} \lambda^2$) dominant | amplitude pollution $\leq 1 \%$ $\operatorname{Im}(\lambda_f) = \sin(2\beta)$ $V_{tb}^{*}V_{ts} = -V_{cb}^{*}V_{cs} - V_{ub}^{*}V_{us}$ (from the mixing) extremely precise

constraint in the $\rho-\eta$ plane

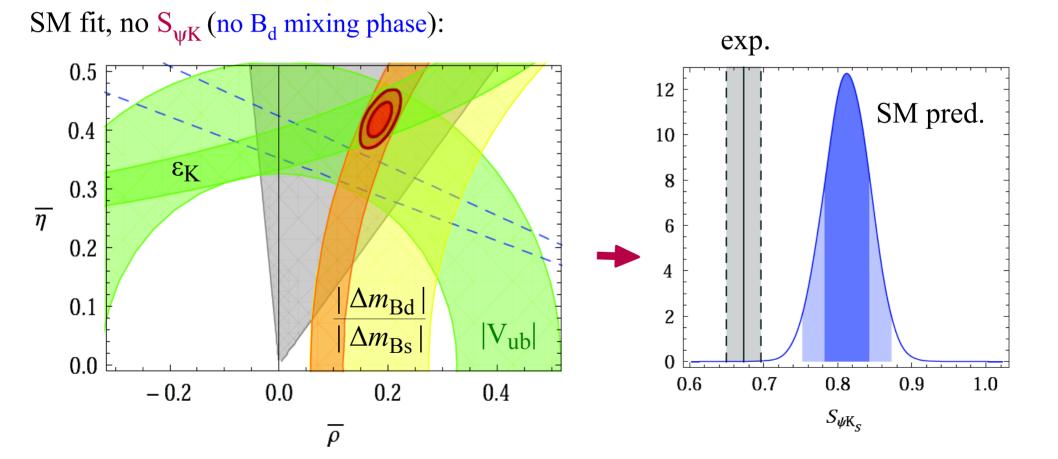


BaBar's final result has been published:



N.B.: Despite the overall consistency of the CKM picture, looking more closely the agreement of the various constraints is not so good. At present there is a $\sim 2\sigma$ tension between

- the value of ε_{K} (CPV in K⁰ mixing) [or |V_{ub}| extracted from B $\rightarrow \tau v$]
- the value of $sin(2\beta)$ extracted from $B_d \rightarrow \psi K$

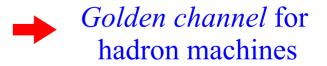


The golden channel for B_s mixing is



$$\mathrm{Im}(\lambda_f) = \frac{\sin(2\beta_s)}{\cos(2\beta_s)} = 0 + \mathrm{O}(\lambda^2) \approx 0.04$$

It is not a constraint in the ρ - η plane but is a very significant test of the SM



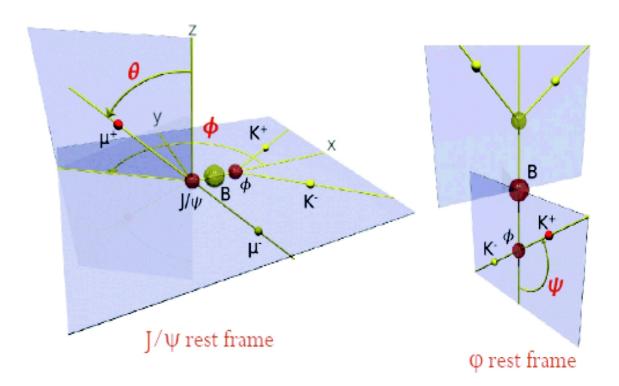
Measuring CPV in B_s mixing

The extraction of the B_s mixing phase differs (and is somehow more challenging) with respect to the B_d case for three main reasons:

• $|\psi \phi\rangle$ is not a CP eigenstate and a complete angular analysis of the 4-body final state is needed in order to disentangle the amplitudes with different CP

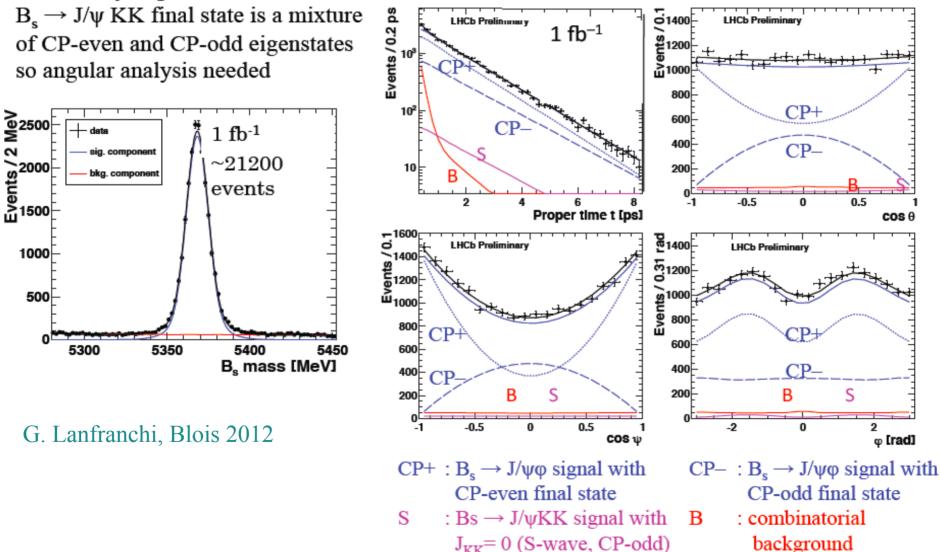
• Since $\Delta\Gamma_s \neq 0$, a simultaneous fit of the width difference and the mixing phase is needed

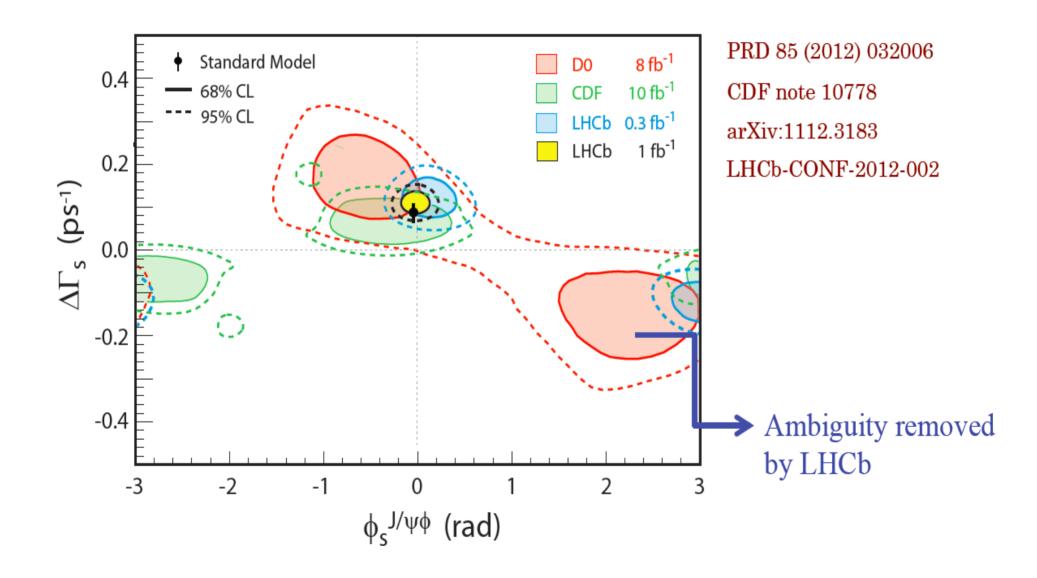
• The flavour tag is much more involved at hadron machines



Here $B_s \rightarrow J/\psi \phi$: LHCb latest result [1fb⁻¹]

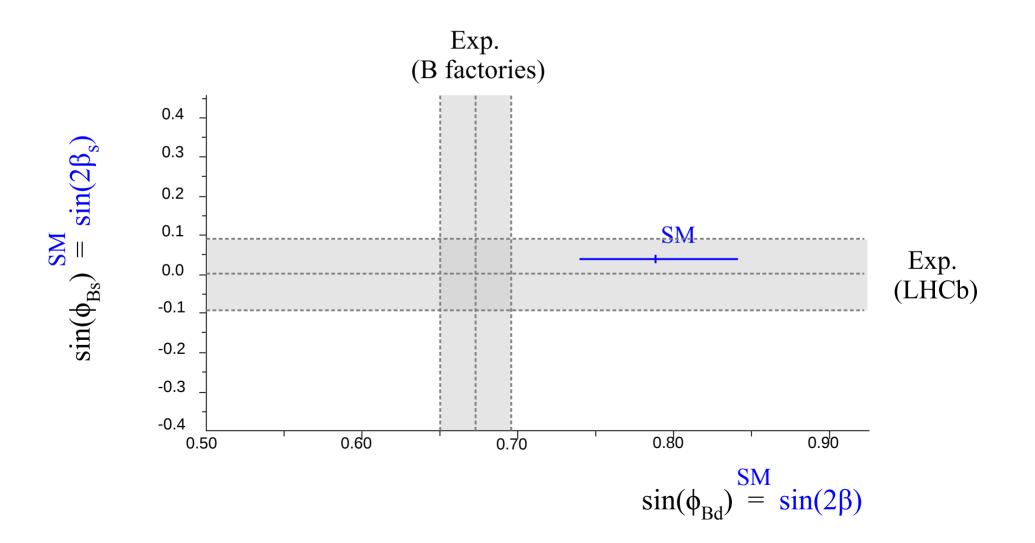
Full fit of tagged and untagged rates as a function of B_s mass, proper time and transversity angles: LHCb-CONF-2012-002, 1/fb

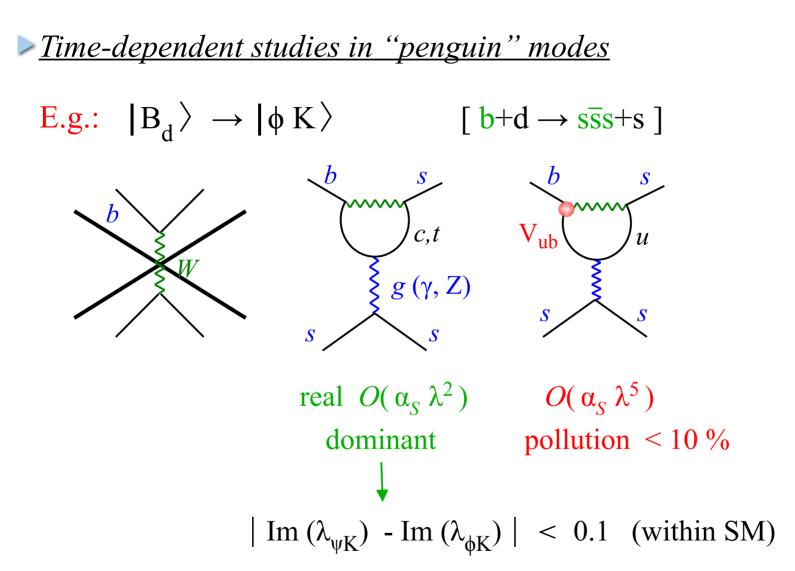




So far there is an excellent agreement with the SM.

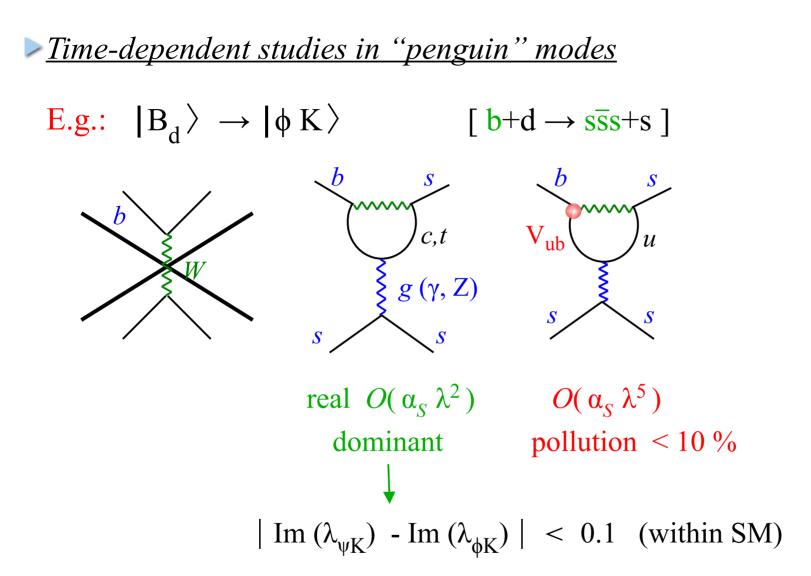
But we cannot exclude surprises with more precise measurements, especially given the "tension" in the B_d case. *There is still a lot to learn*...





These modes are not interesting for precise determinations of CKM elements, neither for very precise tests of the SM, but are potentially sensitive to NP:

 $| \operatorname{Im} (\lambda_{\psi K}) - \operatorname{Im} (\lambda_{\phi K}) | \gg 0.1$ New Physics !

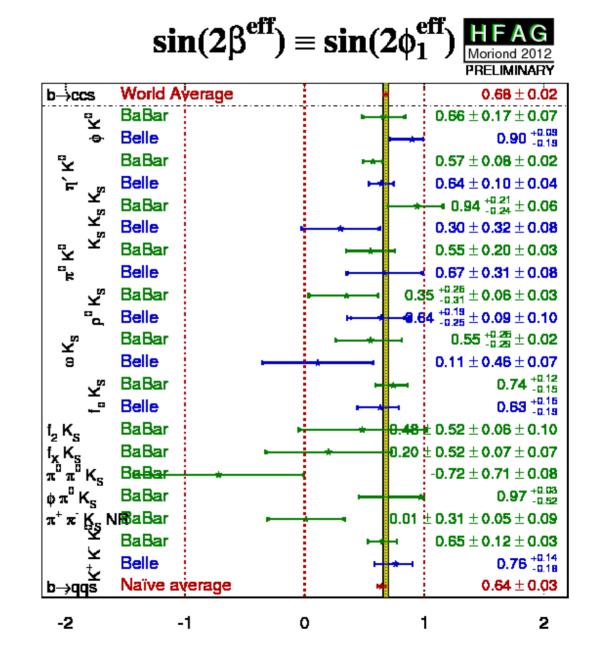


Unfortunately there are not many *pure penguin* channels of this type, moreover, even for pure penguin modes, it is very difficult to control the theory error below the $\sim 10\%$ level

<u>Time-dependent studies in "penguin" modes</u>

A few years ago there was a lot of (partly unjustified...), "excitement". Right now:

- The most clean observables show no significant deviations.
- In most cases the exp. precision is already below the level of the irreducible th. errors.



<u>CPV in charged B decays</u>

CP violation in charged modes is usually easy from the experimental point of view, but it is hard to be predicted/interpreted from the theoretical point of view [no control on non-perturbative hadronic amplitudes]

$$\Gamma(\mathbf{B}^{+} \rightarrow f^{+}) = |\mathbf{A}_{1}^{+} + e^{i\gamma} e^{i\delta} \mathbf{A}_{2}^{+}|^{2}$$

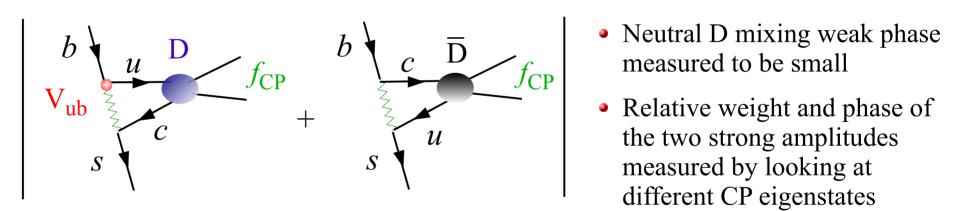
$$\stackrel{\bigstar}{\models} \stackrel{\bigstar}{\models}$$
weak phase
strong phase

$$\Gamma(\mathbf{B}^{-} \to f^{-}) = |\mathbf{A}_{1}^{+} \mathbf{e}^{-\mathbf{i}\gamma} \mathbf{e}^{\mathbf{i}\delta} \mathbf{A}_{2}|^{2}$$

<u>CPV in charged B decays</u>

CP violation in charged modes is usually easy from the experimental point of view, but it is hard to be predicted/interpreted from the theoretical point of view [no control on non-perturbative hadronic amplitudes]

A notable exception are the $B^{\pm} \rightarrow D(\overline{D}) + K^{\pm} \rightarrow f_{CP} + K^{\pm}$ decays



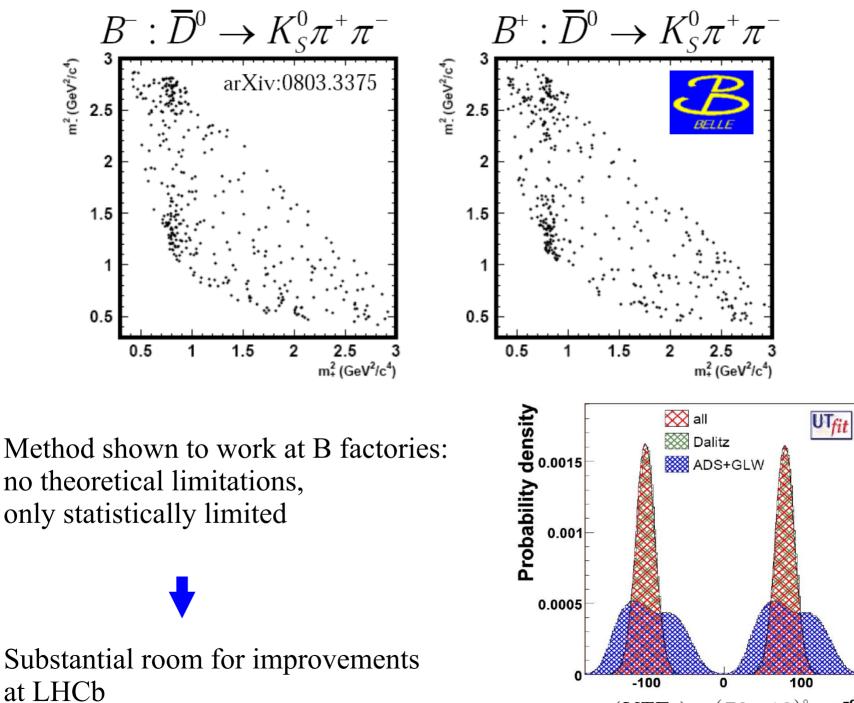
- different CP eigenstates

Clean way to extract phase $\gamma = \arg(V_{ub})$:

- Gronau-London-Wyler/Atwood-Dunietz-Soni methods: $B^{\pm} \rightarrow (K\pi, \pi\pi) + K^{\pm}$
- Giri-Grossman-Soffer-Zupan method: $B^{\pm} \rightarrow (K_S \pi^+ \pi^-) + K^{\pm}$

full Dalitz-Plot analysis

2102 European HEP School (Anjou, June 2012)

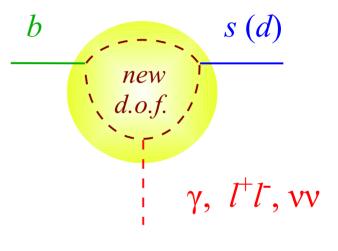


 $\gamma(UTFit) = (78 \pm 12)^{\circ} \gamma \Gamma^{\circ}$

▶<u>Rare B decays</u>

Similarly to $\Delta F=2$ mixings, rare decays mediated by *Flavour Changing Neutral Current* (FCNC) amplitudes are useful probes for *precision* tests of flavor dynamics beyond the SM

- No SM tree-level contribution
- Strong suppression within the SM because of CKM hierarchy
- Predicted with high precision within the SM at the partonic level: NNLO pert. calculations available for all the main B modes ($m_b \gg \Lambda_{OCD}$)



ELECTROWEAK STRUCTURE

The $\Delta F=1$ sector is, in principle, much more reach:

FLAVOUR COUPLING:

	$b \rightarrow s ~(\sim \lambda^2)$	$b \rightarrow d (\sim \lambda^3)$	$s \rightarrow d (\sim \lambda^5)$	
$\Delta F=2$ box	$(Q_L^{\ b} \Gamma Q_L^{\ s})^2$	•••		
$\Delta F=1$ 4-quark box	:	The FCNC matrix	<:	
gluon penguin		each box correspond to an independent combination of dimension-6 $SU(3) \times SU(2) \times U(1)$ -invariant operators		
γ penguin				
Z ⁰ penguin		$\mathscr{L}_{eff} = \mathscr{L}_{SM} + \sum_{d \ge 5} \frac{c_n}{\Lambda^{d-4}} O_n^d$		
H ⁰ penguin				

ELECTROWEAK STRUCTURE

...although not all observables are theoretically very clean

FLAVOUR COUPLING:

	$b \rightarrow s ~(\sim \lambda^2)$	$b \rightarrow d (\sim \lambda^3)$	$s \rightarrow d (\sim \lambda^5)$
$\Delta F=2$ box	ΔM_{Bs} $A_{CP}(B_s \rightarrow \psi \phi)$	ΔM_{Bd} $A_{CP}(B_d \rightarrow \psi K)$	$\Delta M_K, \epsilon_K$
$\Delta F=1$ 4-quark box	$B_d \rightarrow \phi K, B_d \rightarrow K \pi,$	$B_d \rightarrow \pi \pi, B_d \rightarrow \rho \pi, \dots$	$\epsilon'/\epsilon, K \rightarrow 3\pi,$
gluon penguin	$\begin{split} & B_d \rightarrow X_s \gamma, \ B_d \rightarrow \phi K, \\ & B_d \rightarrow K \pi, \dots \end{split}$	$B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi, \dots$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, \dots$
γ penguin	$B_{d} \rightarrow X_{s} l^{\dagger} l, B_{d} \rightarrow X_{s} \gamma$ $B_{d} \rightarrow \phi K, B_{d} \rightarrow K \pi, \dots$	$\begin{split} & \mathbf{B}_{\mathrm{d}} {\rightarrow} \mathbf{X}_{\mathrm{d}} l^{+} l^{-}, \mathbf{B}_{\mathrm{d}} {\rightarrow} \mathbf{X}_{\mathrm{d}} \boldsymbol{\gamma} \\ & \mathbf{B}_{\mathrm{d}} {\rightarrow} \pi \pi, \dots \end{split}$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, \dots$
Z ⁰ penguin	$B_{d} \rightarrow X_{s} l^{\dagger} l^{-}, B_{s} \rightarrow \mu \mu$ $B_{d} \rightarrow \phi K, B_{d} \rightarrow K \pi, \dots$	$\begin{split} & \mathbf{B}_{\mathrm{d}} {\rightarrow} \mathbf{X}_{\mathrm{d}} l^{\dagger} l^{-}, \mathbf{B}_{\mathrm{d}} {\rightarrow} \mu \mu \\ & \mathbf{B}_{\mathrm{d}} {\rightarrow} \pi \pi, \dots \end{split}$	ε'/ε, $K_L \rightarrow \pi^0 l^+ l^-$, $K \rightarrow \pi \nu \nu$, $K \rightarrow \mu \mu$,
H ⁰ penguin	$B_s \rightarrow \mu \mu$	$B_d \rightarrow \mu\mu$	$K_{L,S} \rightarrow \mu \mu$

▶<u>Rare B decays</u>

Similarly to $\Delta F=2$ mixings, rare decays mediated by *Flavour Changing Neutral Current* (FCNC) amplitudes are useful probes for *precision* tests of flavor dynamics beyond the SM

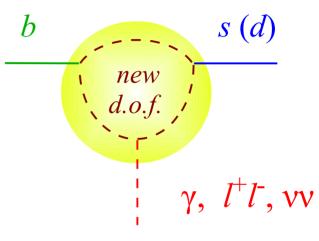
- No SM tree-level contribution
- Strong suppression within the SM because of CKM hierarchy
- Predicted with high precision within the SM at the partonic level: NNLO pert. calculations available for all the main B modes ($m_b \gg \Lambda_{OCD}$)
- The key point is the relation between patonic & hadronic worlds

Fully inclusive decays usually good precision thanks to heavy-quark symmetry

 $\Gamma(b \to s\gamma) \xrightarrow{m_b \to \infty} \Gamma(B \to X_s \gamma)$

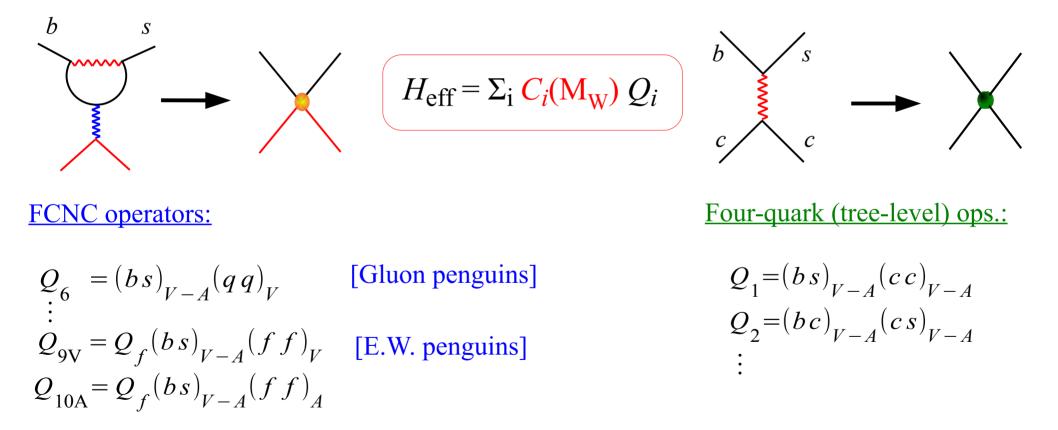
Exclusive decays generally more difficult than inclusive, with some notable exceptions:

 $B \rightarrow (0, K, K^*) + \mu^{-}\mu^{+}$



Three-step procedure to deal with the various scales of the problem:

 1^{st} step: Construction of a local eff. Hamiltonian at the electroweak scale integrating out all the heavy fields around m_W (including the heavy SM fields)



The interesting short-distance info is encoded in the $C_i(M_W)$ (*initial conditions*) of the Wilson coefficients of the FCNC operators

2^{nd} step: Evolution of H_{eff} down to low scales using RGE

Penguin operators:

$$Q_{6} = (bs)_{V-A}(qq)_{V}$$

$$Q_{9V} = Q_{f}(bs)_{V-A}(ff)_{V}$$

$$Q_{10A} = Q_{f}(bs)_{V-A}(ff)_{A}$$

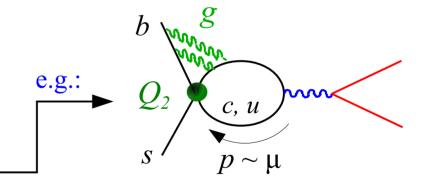
 $H_{\rm eff} = \Sigma_{\rm i} C_i(M_{\rm W}) Q_i$

$$H_{\rm eff} = \Sigma_{\rm i} \, C_i (\mu \sim \rm m_b) \, Q_i$$

$$Q_{1} = (bs)_{V-A} (cc)_{V-A}$$
$$Q_{2} = (bc)_{V-A} (cs)_{V-A}$$

Sources of long-distance effects: [*dilution of the interesting short-distance info*]:

• Mixing of the four-quark Q_i into the FCNC Q_i [perturbative long-distance contribution] —



- <u>Small</u> in the case of <u>electroweak penguins</u> (Q_{10A}) because of the power-like GIM mechanism [mixing parametrically suppressed by $O(m_c^2/m_t^2)$]
- <u>Large</u> for <u>gluon penguins</u>

3rd step: Evaluation of the hadronic matrix elements

 $A(B \to f) = \Sigma_{i} C_{i}(\mu) \langle f | Q_{i} | \mathbf{B} \rangle (\mu) \qquad [\mu \sim m_{b}]$

- sensitivity to long-distances (*cc* threshold, m_c dependence,...)
- distinction between inclusive (OPE + $1/m_{b,c}$ expansion) and exclusive modes (hadronic form factors)
- irreducible large theory errors in the case of exclusive non-leptonic final states

3rd step: Evaluation of the hadronic matrix elements

 $A(B \to f) = \Sigma_{i} C_{i}(\mu) \langle f | Q_{i} | \mathbf{B} \rangle (\mu) \qquad [\mu \sim m_{b}]$

- sensitivity to long-distances (*cc* threshold, m_c dependence,...)
- distinction between inclusive (OPE + $1/m_{b,c}$ expansion) and exclusive modes (hadronic form factors)
- irreducible large theory errors in the case of exclusive non-leptonic final states

Putting all the ingredients together in the case of $B \rightarrow X_s \gamma$ [best inclusive mode so far]:

NNLO SM th. estimate:To be compared with: $B(B \rightarrow X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ $B(B \rightarrow X_s \gamma) = (3.57 \pm 0.24) \times 10^{-4}$ [Misiak et al. '07][present exp. W.A.]

A great success for the SM... ...and a great challenge for many of its extensions !

Exclusive rare B decays

The accuracy on *exclusive* FCNC *B* decays of the type $B \rightarrow H^+(\gamma, l^+l^-)$ depends on the th. control of $B \rightarrow H$ hadronic form factors :

$$A(B \to f) = \sum_{i} C_{i}(\mu) \langle f | Q_{i} | B \rangle(\mu) \qquad \mu \sim m_{b}$$

 Several progress in the last few years [Light-cone sum rules, Heavy-quark expansion, Lattice] but typical errors still ~ 30%

The most difficult exclusive observables are the total branching ratios however, *f.f.* uncertainties can be considerably reduced in appropriate ratios or <u>differential distributions</u>, or considering very peculiar final states.

Notable examples:

I. $B(B_{s,d} \rightarrow \mu^+ \mu^-)$

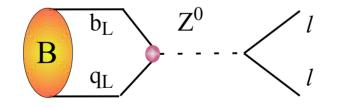
II. Differential distributions in $B \to K^* \mu^+ \mu^-$

$$B_{s,d} \rightarrow \mu^+ \mu^-$$

A special case among exclusive *B* decays:

- No vector-current contribution [th. error of the short-distance calculation $\sim 1\%$]
- Hadronic matrix element relatively simple [f_B within the SM]

$$\langle 0 | \overline{b} \gamma_{\mu} \gamma_{5} u | B(p) \rangle = i f_{B} p_{\mu}$$



$$B_{s,d} \rightarrow \mu^+ \mu^-$$

A special case among exclusive *B* decays:

• No vector-current contribution [th. error of the short-distance calculation $\sim 1\%$]

• Hadronic matrix element relatively simple [f_B within the SM]

$$\langle 0 | \overline{b} \gamma_{\mu} \gamma_{5} u | B(p) \rangle = i f_{B} p_{\mu}$$

- Very clean signature
- Strong sensitivity to scalar currents beyond the SM [Higgs penguin]

Sizable deviations possible in multi-Higgs models, even without new flavor structures [SUSY @ large tan β]

SM expectations:

 $B(B_s \rightarrow \mu\mu)_{SM} = 3.2(2) \times 10^{-9}$ $B(B_s \rightarrow \mu\mu)_{SM} = 1.0(1) \times 10^{-10}$ *e* channels suppressed by $(m_e/m_\mu)^2$ *τ* channels enhanced by $(m_\tau/m_\mu)^2$

$$B_{s,d} \rightarrow \mu^+ \mu^-$$

A special case among exclusive *B* decays:

- No vector-current contribution [th. error of the short-distance calculation $\sim 1\%$]
- Hadronic matrix element relatively simple [f_B within the SM]

$$\langle 0 | \overline{b} \gamma_{\mu} \gamma_{5} u | B(p) \rangle = i f_{B} p_{\mu}$$

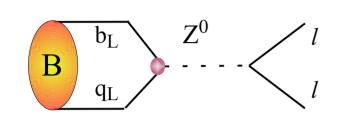
- Very clean signature
- <u>Strong sensitivity to scalar currents beyond the SM</u> [*Higgs penguin*]

Exercise [to understand why $B_{s,d} \rightarrow ll$ is interesting]:

- Compute $B_u \rightarrow lv$ at the tree-level and compare it with the result obtained in the *gauge-less* limit
- Help: $\langle 0 | \overline{b} \gamma_{\mu} \gamma_5 u | B(p) \rangle = i f_B m_B^2 / m_b \& \text{neglect } m_B / M_W$

2102 European HEP School (Anjou, June 2012)

$$B_{s,d} \rightarrow \mu^+ \mu^-$$

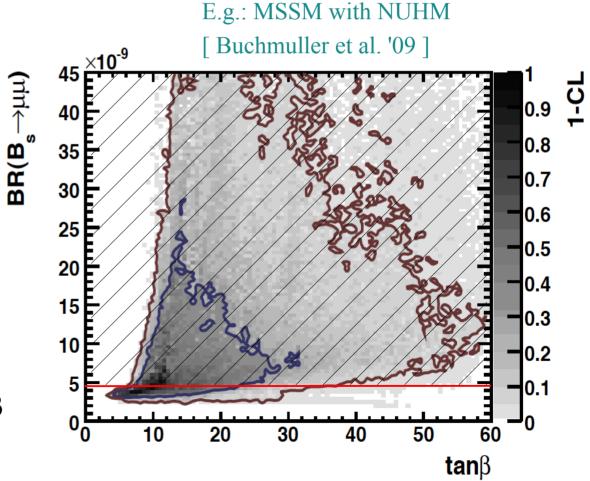


The recent exp. bounds:

Intervals at 95% CL for BR(B_s→ $\mu^+ \mu^-$) D0 (PLB 693 2010 539) CDF (H. Miyake, La Thuile 2012) ATLAS (arXiv:1204.0735) -CMS (arXiv:1203.3976) -CMS (arXiv:1203.4493) SM 0 1 2 3 4 5 BR(B_s→ $\mu^+ \mu$) (10⁶)

Have strongly restricted the large $tan\beta$ scenario of minimal SUSY models

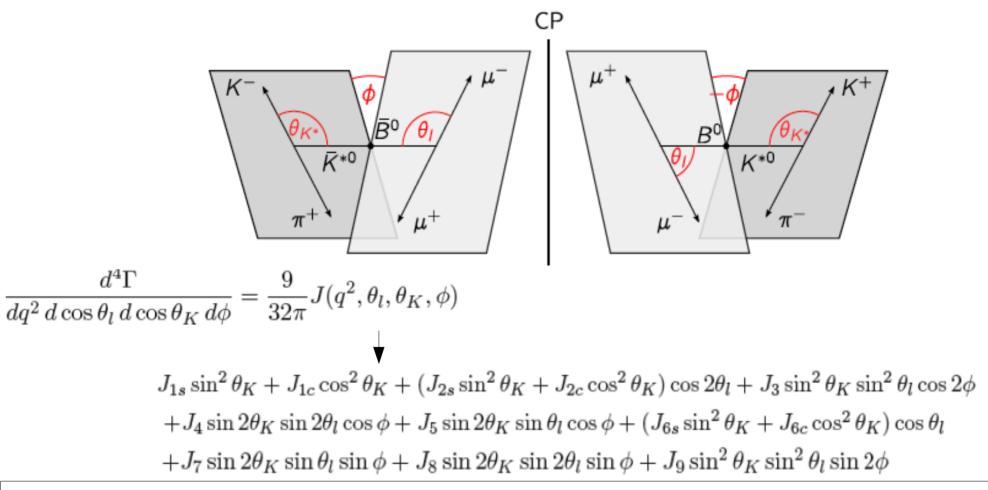
The amplitude is dominated by the longitudinal component of the Z (or the contribution of the Goldstone bosons) \rightarrow particularly sensitive to possible modifications of the Higgs sector.



Differential distributions in
$$B \rightarrow K^* \mu^+ \mu^-$$

$$B^0 \to K^{0*} \left(\to K^+ \pi^- \right) \, \mu^+ \mu^-$$

$$\overline{B}{}^0 \rightarrow \overline{K}{}^{0*} (\rightarrow K^- \pi^+) \mu^+ \mu^-$$



The angular distribution give access to several observables (12 indep. terms !)
Self-tagging mode: easy to measure <u>CP asymmetries</u>

E.g.: The FB asymmetry

$$A_{FB} = \int \frac{d^2 B(B \to K^* \mu^+ \mu^-)}{ds \, d \cos \theta} \, sgn(\cos \theta) \propto \Re \left\{ C_{10}^* \left[s \, C_9 + r(s) \, C_7 \right] \right\}$$

$$\theta = \text{angle between } \mu^+ \& B \text{ momenta}$$

in the dilepton rest frame
th. error ~5 %

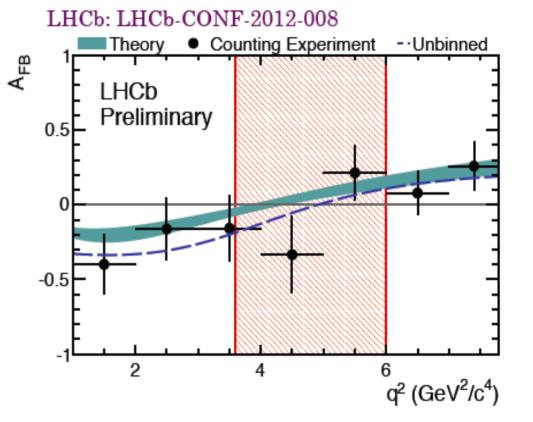
- Direct access to the *relative phases* of the C_i
- Proportional to C_{10} (\rightarrow interference of axial & vector currents \rightarrow small QCD corrections)
- Particularly clean prediction: $A_{FB}(s) = 0$ for $s = q^2/m_b^2 \sim C_7/C_9$
- Hadronic uncertainties substantially decreased with a proper normalization.

E.g.: The FB asymmetry

The clean prediction:

 $A_{FB}(s) = 0$ for $s = q^2/m_b^2 \sim C_7/C_9$

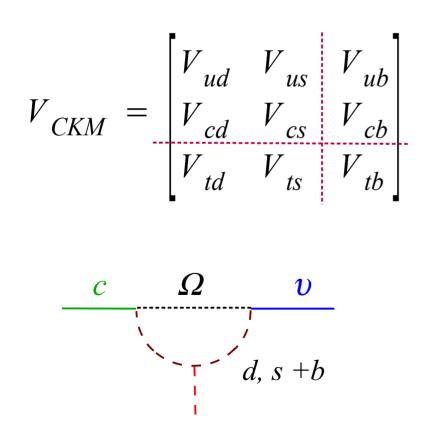
Has recently been tested with good precision by LHCb, but there are many more observables that could be studied in this mode.



<u>CP violation in the charm system</u>

The physics of charm mixing and charm decays ($c \rightarrow u$ transitions) is quite different with respect to the B_{s,d} ($b \rightarrow s,d$) and K ($s \rightarrow d$) systems.

No top-enhancement of FCNC amplitudes (both $\Delta F=2 \& \Delta F=1$):



- $V_{CKM} = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}$ In all CP-conserving amplitudes we can safely approximate the CKM matrix to a <u>2x2 real</u> mixing matrix, and long-distance contributions are largely dominant
 - CP-violating amplitudes are not calculable with high-accuracy within the SM, but are expected to be very small because of the CKM hierarchy ⇒ possible interesting null-tests of the SM

<u>CP violation in the charm system</u>

The *news of the year* in flavour physics is the evidence of CP violation in twobody Cabibbo-suppressed charm decays D \rightarrow KK, $\pi\pi$ (c \rightarrow u+ss,dd) observed by LHCb & CDF:

$$\Delta a_{\rm CP} = a_{\rm CP} ({\rm K}^+{\rm K}^-) - a_{\rm CP} (\pi^+\pi^-) = (0.67 \pm 0.16)\%$$

•Unambiguos evidence of direct CP violation:

$$a_{\rm CP}^{\rm (dir)} = \frac{\Gamma(D \rightarrow \rm PP) - \Gamma(\overline{D} \rightarrow \rm PP)}{\Gamma(D \rightarrow \rm PP) + \Gamma(\overline{D} \rightarrow \rm PP)}$$

• <u>Totally unexpected</u>, at least according to all the pre-LHCb predictions of the last 20 years: direct CPV in charm above 0.1% quoted as "clear signal of physics beyond the SM"...

 $\blacktriangleright The puzzle of \Delta a_{CP}$

Let's consider the relevant SM effective Hamiltonian ($|\Delta c|=1$, $|\Delta s|=0$) renormalized at a scale $m_c < \mu < m_b$

nguin operators

he perturbative regime: $C_i \sim \alpha_s(\mu)/\pi$

O(1) Wilson coeff.

 $Q_2^q = (\bar{u}_\alpha q_\beta)_{V-A} (\bar{q}_\beta c_\alpha)_{V-A}$

$$\lambda_q = V_{cq}^* V_{uq} = \begin{bmatrix} +\lambda + \dots & (q=d) \\ -\lambda + \dots & (q=s) \\ A^2 \lambda^5 e^{-i\gamma} & (q=b) \end{bmatrix} \qquad \lambda_d + \lambda_s + \lambda_b = 0$$

To a good approximation, for sufficiently heavy μ :

$$\mathcal{H}_{|\Delta c|=1}^{\text{eff}} \approx \lambda_d \, \mathcal{H}_{|\Delta c|=1}^d + \lambda_s \, \mathcal{H}_{|\Delta c|=1}^s$$

 $\ge \underline{The \ puzzle \ of} \ \Delta a_{CP}$

To a good approximation, for sufficiently heavy μ :

 $\blacktriangleright The puzzle of \Delta a_{CP}$

To a good approximation, for sufficiently heavy μ :

$$\mathcal{H}_{|\Delta c|=1}^{\text{eff}} \approx \lambda_{d} \mathcal{H}_{|\Delta c|=1}^{d} + \lambda_{s} \mathcal{H}_{|\Delta c|=1}^{s}$$

$$= + \lambda_{d} (\mathcal{H}_{|\Delta c|=1}^{d} - \mathcal{H}_{|\Delta c|=1}^{s}) - \lambda_{b} \mathcal{H}_{|\Delta c|=1}^{s}$$

$$= -\lambda_{s} (\mathcal{H}_{|\Delta c|=1}^{d} - \mathcal{H}_{|\Delta c|=1}^{s}) - \lambda_{b} \mathcal{H}_{|\Delta c|=1}^{d}$$

$$\frac{\mathcal{H}_{|\Delta c|=1}^{s}}{\int_{u}^{u} \mathcal{H}_{u}^{s}} \mathcal{H}_{u}^{s}$$

$$\frac{\mathcal{H}_{|\Delta c|=1}^{u}}{\int_{u}^{u} \mathcal{H}_{u}^{s}} \mathcal{H}_{u}^{s}$$

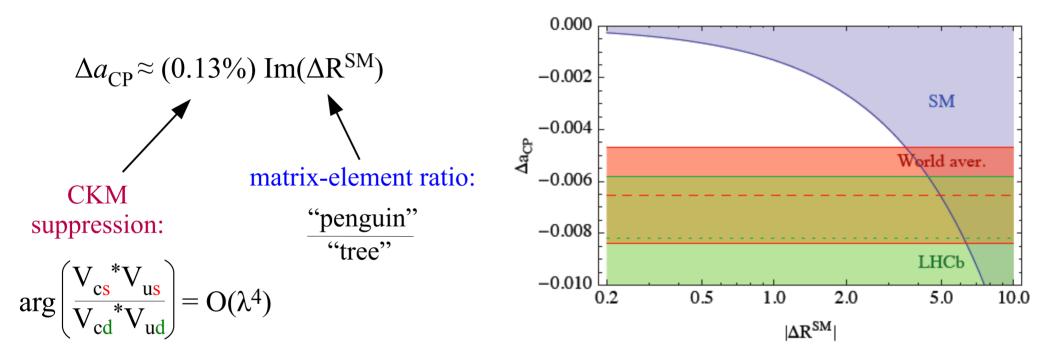
$$\frac{\mathcal{H}_{|\Delta c|=1}^{u}}{\int_{u}^{u} \mathcal{H}_{u}^{s}} \mathcal{H}_{u}^{s}$$

$$\frac{\mathcal{H}_{|\Delta c|=1}^{u}}{\int_{u}^{u} \mathcal{H}_{u}^{s}} \mathcal{H}_{u}^{s}$$

$$\frac{\mathcal{H}_{|\Delta c|=1}^{u}}{\int_{u}^{u} \mathcal{H}_{u}^{s}} \mathcal{H}_{u}^{s}$$

$\blacktriangleright The puzzle of \Delta a_{CP}$

The observed Δa_{CP} is large compared to its "natural" SM expectation, but is not large enough, compared to SM uncertainties, to be considered a clear signal of NP:



 $\Delta R>1$ is not what we expect for $m_c >> \Lambda_{QCD}$, but is not impossible treating the charm as a light quark (*possible connection with the* $\Delta I=1/2$ *rule in Kaons*) More works (and especially more observables) needed in order to clarify the situation.