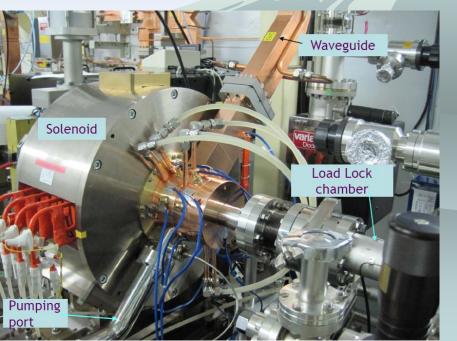
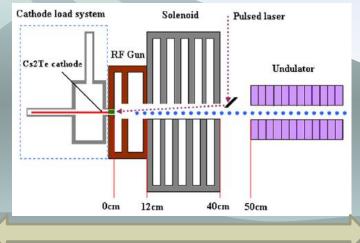
A few hundred femto-second soft X-ray source by several meter facility

2011.9.12 Junji Urakawa (KEK, Japan)

Contents : 1. Introduction 2. Basic Technologies 2-1. High Gradient S-band RF Gun 2-2. Multi f-second Laser Pulse Train 3. Rough Evaluation by ASTRA and Genesis 4. Development Plan 5. From THz microwave to soft X-ray

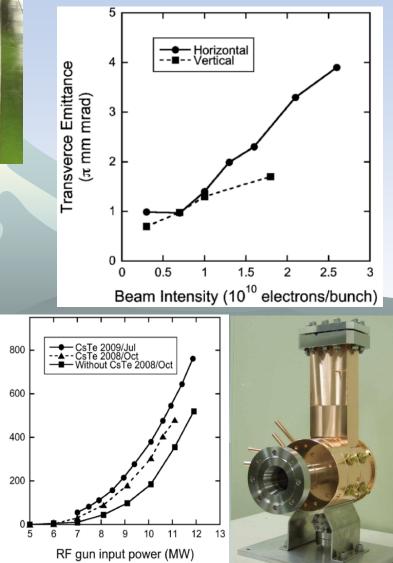

1. Introduction


This presentation was stimulated by the papers of Shengguang Liu and Yen-Chieh Huang (NIM A, doi:10.1016/j.nima.2010.02.050 and APL, doi:10.1063/1.3447928)

Terahertz radiation is an electromagnetic wave in the frequency interval from 0.3 to 10THz, which is a scientifically rich, but technologically limited frequency band.

A THz-FEL is a good candidate due to its characteristics of high peak brightness, short duration, and tunable wave length.

However, the need for a huge facility and substantial funds limit THz-FEL development. Two important goals are to make the THz-FEL facility compact and to increase its output radiation power. **Then, I propose several hundred femto-s soft X-ray source facility.**


Less than 2m **THz Peak power :10MW to 100MW**

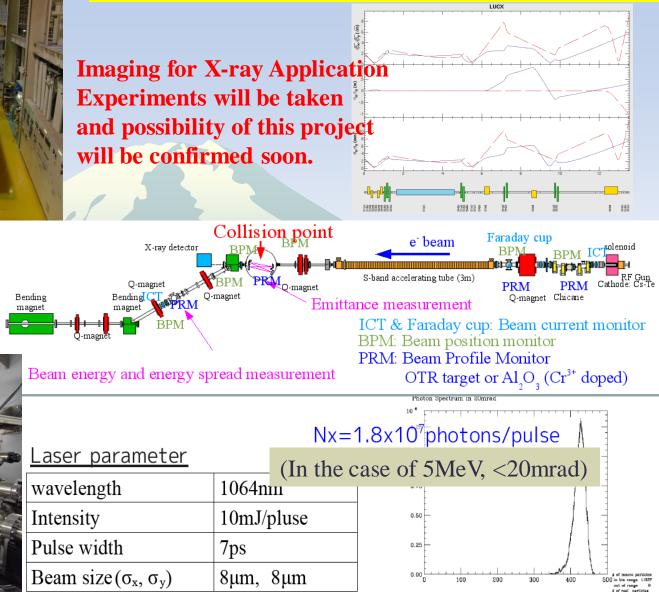
A laser-driven RF gun with a Cs₂Te photocathode has been developed at KEK since 2002. This gun has been operated as an electron source for the ATF and generates a beam with an operational intensity of up to 2×10^{10} electrons per bunch. In 2008, a new gun incorporating all of the earlier modifications was produced for the ATF. Tests have confirmed a significant improvement of the Q value of the latest model. A typical transverse emittance of 1.3 π **mm**·**mrad** at 80 MeV has been obtained under the following conditions: solenoid field of 0.18 T, beam intensity of 1×10^{10} electrons per bunch, and RF power of 9 MW.

2. Basic Technologies 2-1. High Gradient S-band RF Gun

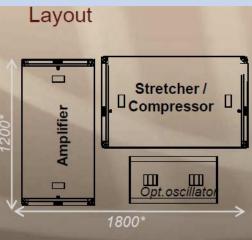
1.3GeV ATF Linac, results at 80MeV beam.

Current (pC/pulse)

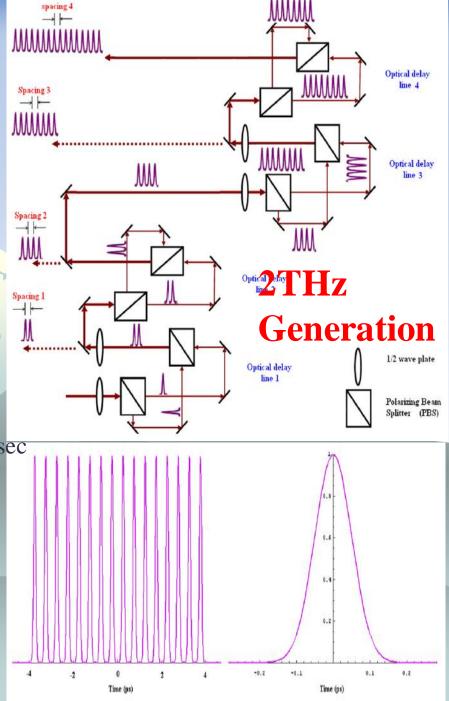
Dark


Advanced Accelerator Facility from 2008 to 2012 for Quantum Beam R&D

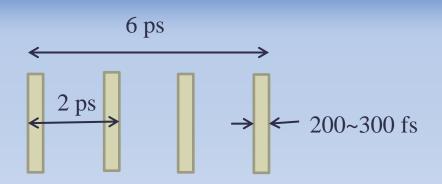
Maximum Energy 50MeV Maximum Beam Power 156.26MeV μA



Multi-bunch electron beam generation, pulse laser accumulation system Upgrade, R&D of precise multi-collision control will be done using this normal conducting facility by end of March 2012.


2-2. Multi f-second Laser Pulse Train

CPA Titanium-Sapphire laser system to generate 1 μ J/pulse at 800nm in the range from 20 to 100fs: Aurora(1mJ) or Trident laser system of Amplitude Technologies, multi-bunch beam generation is possible due to enough laser power.



*All dimensions given in mm Subject to change without notice Performances ½ plate rotates S-wave by 45 degrees. PBS makes S-wave and P-wave by reflection and transmission.
Repeated 4 times with delay of about 500 fs.
Then, we got 16 microbunched laser within 8 psec

Model	Trident X	Trident C	Trident M		
Rep. rate	10 Hz	100 Hz	multi-kHz		
Energy	Up to 25 mJ	Up to 4 mJ	Up to 3 mJ		
Pulse duration	Down to 30fs**				
ASE contrast	> 10 ⁵ :1				
M²	< 1,3				
Stability (% rms)	< 1,5% rms	< 1,2% rms	< 0,8% rms		

Essential points : Pre-bunched FEL, **Dynamical bunching in RF gun** cavity which means faster laser injection phase less than 20 deg., Micro-bunch spacing should be matched to wavelength, Late micro-bunch makes the bunching of former micro-bunches in resonated Undulator.

Time structure of 4 micro laser train for 500GHz super radiation from Undulator

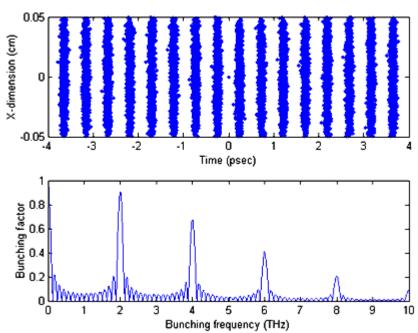
500GHz microwave generation

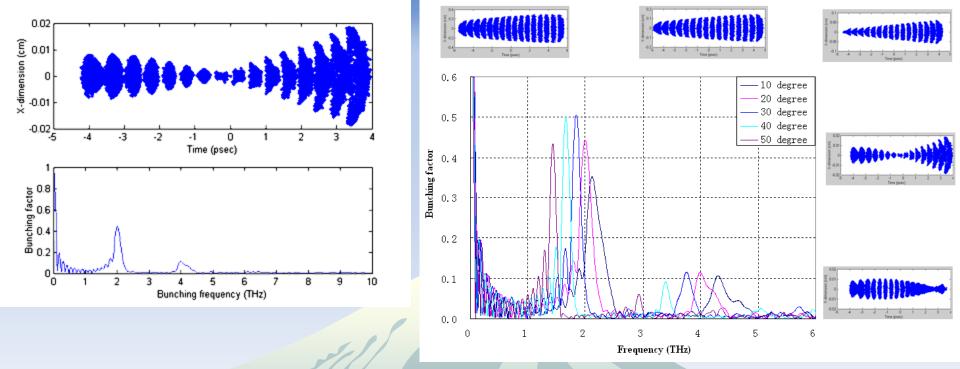
Problem: beam loading effect due to multi micro-bunch and tuning on undulator field by pole-gap which makes the FEL resonance.

If we accept low micro-bunch charge, say 100pC or less, and not many micro-bunch, say 10 or less, above problems can be overcame. We assume the time response of Cs_2 Te cathode is same as Cu cathode and 0.2% QE at least.

We try to generate total single bunch charge 50pC and conversion efficiency from 800nm to 266nm by nonlinear crystal:10% may be possible.

Necessary number of photons: 7E11/pulse Laser pulse energy:0.5µJ

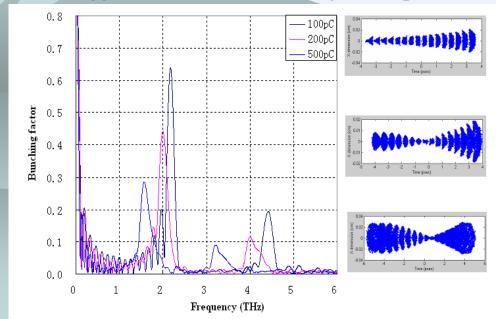

3. Rough Evaluation by ASTRA and Genesis


Astra (A Space Charge Tracking Algorithm) by K. Flottmann (DESY) Genesis by Sven Reiche (PSI)

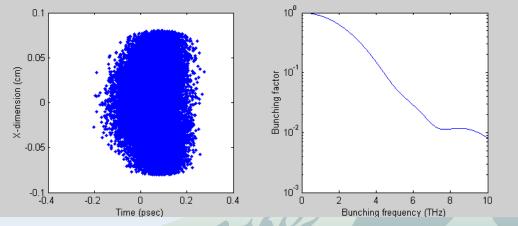
We assume the peak RF field gradient at the cathode surface is 100MV/m, 200pC and the laser injection phase is 20 degree.

The bunching factor at 2THz is still high ,0.446 at the wiggler entrance, see next figure.

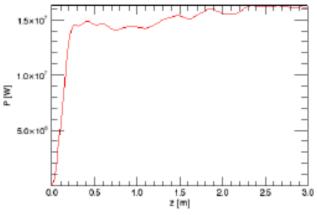
$$\begin{split} P = & P_1[N_e + N_e(N_e\text{-}1)B(f)], \\ B(f) = & \sum exp(i2\pi f z_j/c)/N_e, \\ & \lambda_r = & \lambda_w(1 + K^2)/(2\gamma^2) \end{split}$$



Above shows bunching factor dependence at the wiggler entrance on laser injection phase.


Right figure shows bunching factor dependence on total charge assuming Micro-bunch charge is uniform.

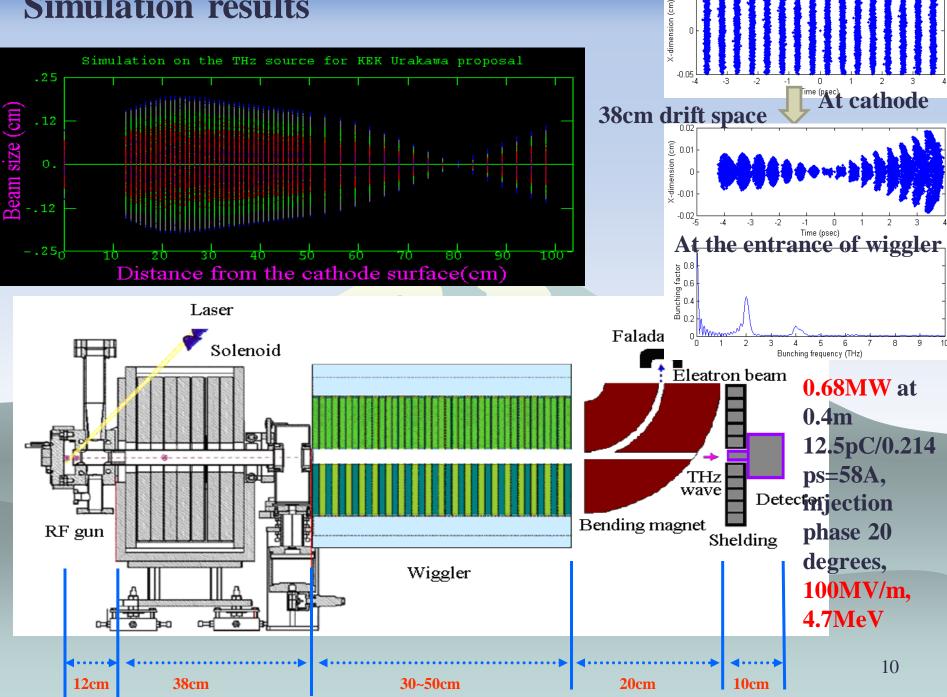
We need higher gradient acceleration, lower total charge and about 20 degree laser injection phase to keep a high bunching factor.


For example, we assume the peak field gradient at the cathode surface is 120MV/m and laser injection phase 20 degree. Then, electron beam energy is 5.68MeV. Also, we consider the wiggler period length 30mm and 2THz radiation (wave length 150 μ m). g=12, K=0.873

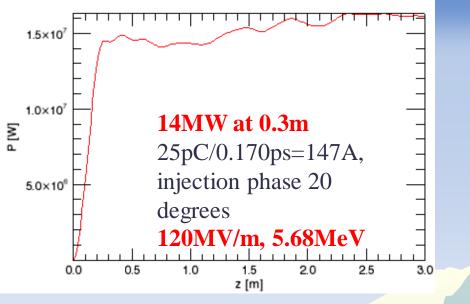
Uniform laser size on cathode 1.0mmø, total charge 25pC

170 fs (FWHM), peak current=147A

My colleague, Prof. Yan of Osaka University, demonstrated the generation of 100fs single electron bunched beam and obtained the single-shot Ultrafast Electron Diffraction (UED) using our RF gun cavity. In this experiment, the time resolution was 20fs in sigma.

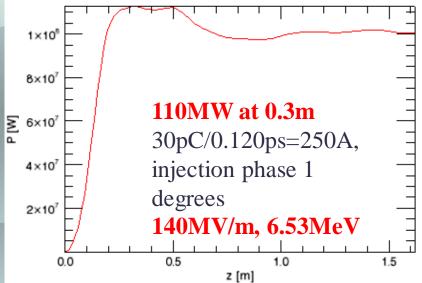

14 MW peak power at 0.3m position

Electron beam:Sample:**3 pC, 3 MeV**,~180nm-thick10 Hz operationsingle-crystal Si


The single-shot measurement was succeeded

Simulation results

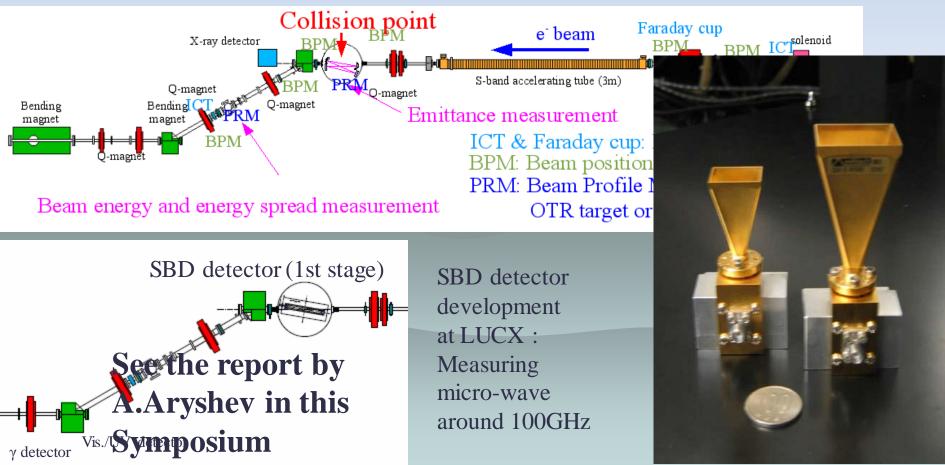
0.05

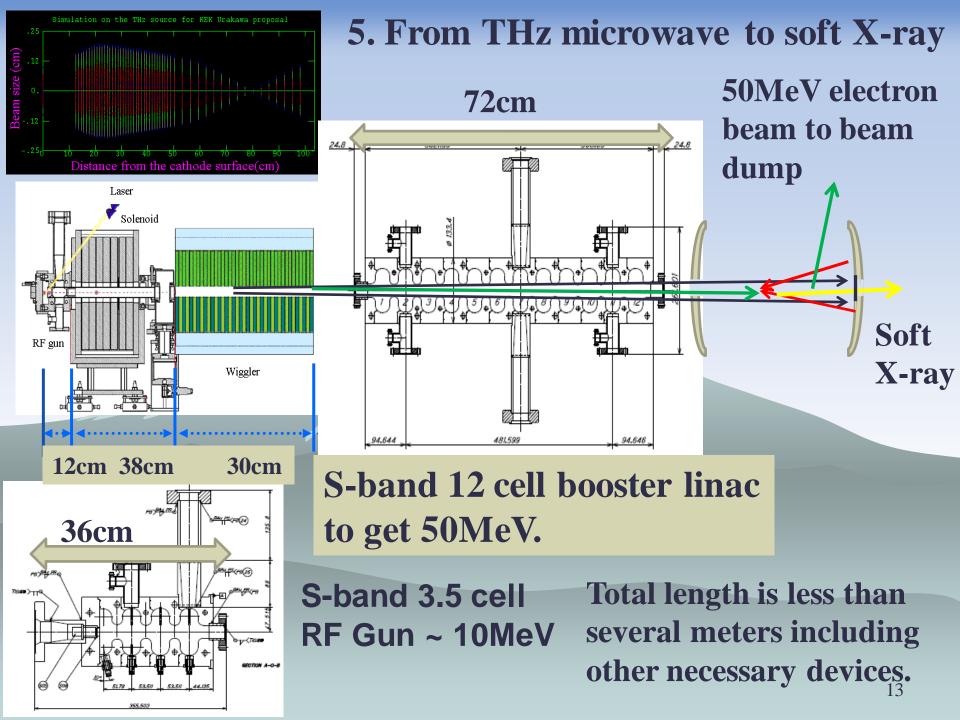

6×10' <u> առուհատ հատհատհատ հատ</u>հ<u>հ</u> 5×107 4×10⁷ 60MW at 0.4m ∑ 3×10⁷ 25pC/0.136ps=184A, injection phase 20 2×10⁷ degrees 1×107 140MV/m, 6.66MeV 3.0 0.0 0.5 2.51.0 1.5 20 z [m]

 $P=P_1[N_e + N_e(N_e-1)B(f)], \quad B(f)=\sum exp(i2\pi fz_j/c)/N_e,$ $\lambda_r = \lambda_w(1+K^2)/(2\gamma^2), \text{ K: tune the gap to make the resonance.}$

High gradient acceleration: shorter bunch length (100MV/m-→140MV/m)

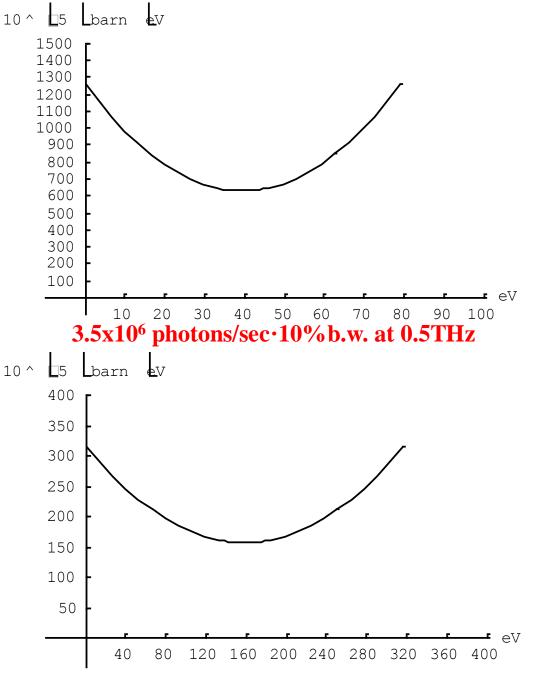
earlier laser injection phase: high bunching factor High Peak Power radiation $(20 \rightarrow 10 \rightarrow 1)$


THz peak power 100MW generation will be possible.
High gradient acceleration gun is essential.
100μJ/pulse THz source will be 1mJ-fs laser



We have to take care the shielding effect to CSR, maybe.

4. Development Plan


I want to demonstrate the generation of ~500fs electron beam by measuring THz CDR in JFY2012. Anyway, we are developing micro-wave detector for sub-THz power measurement. Generation of multi-trains of 500fs THz wave is very useful for life science.

Rough estimation of Soft X-ray yield.

10THz microwave Generation is very Interesting but very Challenging.

7.5x10⁶ photons/sec · 10% b.w. at 2THz

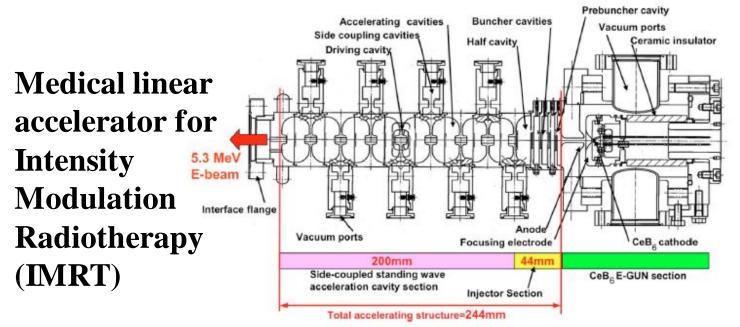
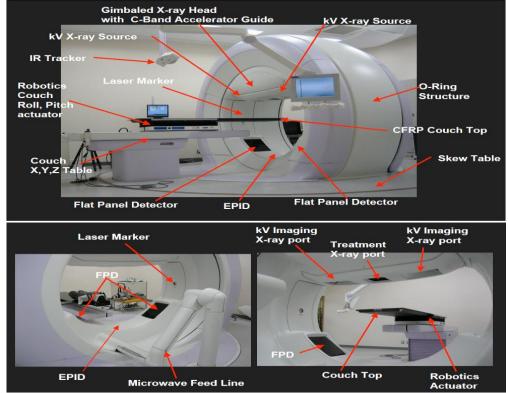



FIG. 3. The accelerator guide is composed of the electron gun section with a CeB_6 cathode, an injector section, and a side-coupled standing wave acceleration cavity section.

Commercial available medical linac produced by Mitsubishi heavy Industry Co., which is a four-dimensional image-guided radiotherapy System (4D IGRT). Total length of 5.3MeV linac is less than 50cm.

Electron beam	Laser pulse	Collision condition	10% bandwidth X- ray rate [Hz] (Calc.)	Detected X- ray rate
40MeV, 100bunches/pulse, 12.5Hzoperation, bunch charge=0.4nC, 2.8nsec bunch spacing, σ _{ez} =6psec	$\begin{array}{llllllllllllllllllllllllllllllllllll$	σ_{ex}/σ_{ey} =200/40 μ m , σ_{1x}/σ_{1y} =30/30 μ m, Crossing angle 20deg.	1.34 x10 ⁵	1.2x10 ⁵ Hz/10 %b.w.~ 10 ⁶ Hz/10%b w.
500bunches/pulse, bunch charge=0.5nC, etc. Same above	1.12mJ/pulse, 357MHz burst mode operation in cavity	$\sigma_{ex}/\sigma_{ey}=60/30\mu m$, $\sigma_{lx}/\sigma_{ly}=30/30\mu m$,e tc. same above	6.6x10 ^{6~7}	By 2011.11.30
Same above	Same above	Crossing angle 10deg.	1.2x10 ⁷	cancelled
8000bunches/pulse, etc. Same above	Same above	Same above	3.3x10 ⁸	
Same above	Same above	Head-on	9.4x10 ⁸	From 2011.12
Same above	Same above	σ_{ex}/σ_{ey} =10/10 μ m, σ_{1x}/σ_{1y} =20/20 μ m	8.5x10 ⁹	
Same above	10.2mJ/pulse, 357MHz burst mode operation in cavity	Same above	8.5x10 ¹⁰	By 2012.3