

# Sub-micrometer resolution transverse electron beam size measurement system based on optical transition radiation 

Alexander Aryshev ${ }^{c}$, Stewart Boogerta ${ }^{\text {a }}$, Pavel Karataev ${ }^{\text {a }}$
David Howellb, Nobihiro Terunuma ${ }^{\text {c }}$, Junji Urakawa ${ }^{\text {c }}$
${ }^{\text {a }}$ John Adams Institute at Royal Holloway, Egham, Surrey, TW20 0EX, UK
${ }^{\text {b }}$ John Adams Institute at Oxford University, Nuclear and
Astrophysics Laboratory, Keble Road, Oxford OX1 3RH, UK
${ }^{\text {c }}$ KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

## Outline

- Introduction
- ATF-II
- OTR setup
- Electron beam optics
- Optical Transition Radiation
- Beam size effect on PSF
- Experimental data
- Self-Calibration procedure
- General approach
- Errors propagation
- Calibration curve
- Reconstructed Quadrupole scan
- Final remarks
- Summary


## Introduction



## KEK ATF-II, beam parameters



## ATF-II beam line, OTR setup



## Interaction Chamber, OTR line



## Electron beam optics



## Optical Transition Radiation



Transition radiation (TR) appears when a charged particle crosses a boundary between two media with different dielectric constants.
The resolution is determined by the source dimensions induced by a single particle plus distortion caused by the optical system (diffraction of OTR tails)

## Beam size effect



RREPS-11
ATF, EXT LW OTR, 9/23

## OTR image with NO filter and polarizer





RREPS-11
ATF, EXT LW OTR, 10/23

## OTR image with polarizer and optical

filter

P. Karataev, et al., The First Observation of the Point Spread Function of Optical Transition
Radiation, submitted to Physical Review Letters.



ATF, EXT LW OTR, 11/23

## Errors propagation

- CCDs are silicon semiconductor devices which use a reverse-biased pn junction to absorb photons and produce charges representing sensed pixels. The accumulated electrons in each pixel get represented by a number in ADU (Analogue-to-Digital Unit).
- Inverse-Gain is this conversion factor in dimensionless units of e-/DN.
- Noise in photon counting is referred to as "Poisson" noise associated with counting statistics. For the Poisson distribution and taking into account Inverse-Gain, the standard deviation is

$$
S T D_{\text {pixel }}=\sqrt{\mathrm{gain} \cdot N}
$$

- where $N$ is the number of detected events [S. B. Howell, Handbook of CCD astronomy, Cambridge University Press, 2000].
- The next step in image processing is pixel-by-pixel background subtraction with correct error propagation:

$$
S T D_{\text {pixel }}^{\text {sub }}=\sqrt{S T D_{\text {pixel }}^{\text {inage }}{ }^{2}+S T D_{\text {pixel }}^{\text {backround } d^{2}}}
$$

## Image manipulation

- To deduct image noise and remove bad pixels the median window filter was used [A. Bovik, The essential guide to image processing, Elsevier, 2009].
- A portion of resulting image to produce horizontal or vertical projections summing rows or columns respectfully was extracted and pixel scale of the projection was converted into microns as follows:

$$
X_{i}^{u m}=\frac{X_{i}^{\text {pixel }} \cdot \text { binning } \cdot \text { pixel size }}{\text { magnification factor }}
$$

- The magnification factor for the data set under analysis was 10.69, [A. Aryshev, et. al., IPAC'10, June 2008, Kyoto, Japan, MOPEA053 ]


## OTR image



## Horizontal projection



## Quadrupole scan, horizontal projection



RREPS-11
ATF, EXT LW OTR, 16/23

## OTR PSF-like Fit function

$$
f(x)=a+\frac{b}{1+[c(x-\Delta x)]^{4}}\left[1-e^{-2 c^{2} \sigma^{2}} \cos [c(x-\Delta x)]\right]
$$

$$
\begin{array}{|lll|}
\hline \mathrm{a} & 143.034+/-80.2691 \\
\mathrm{~b} & 60440.8+/-175.643 \\
\mathrm{c} & 0.0807 \quad+/-0.00165 \\
\Delta \mathrm{x} & 543.838+/-0.18656 \\
\sigma & 2.36213+/-0.59153 \\
\hline
\end{array}
$$

Here $a, b, \mathrm{c}, \sigma$, and $\Delta x$ are free parameters of the fit function; - $a$ is the vertical offset of the distribution with respect to zero. - $b$ is responsible for the amplitude of the distribution; - c is responsible for the distribution width; - $\sigma$ is the smoothing parameter dominantly defined by the beam size;

- $\Delta x$ is the horizontal offset of the distribution with respect to zero.


RREPS-11
ATF, EXT LW OTR, 17/23

## Self-Calibration procedure

- In the whole data set find a file with smallest $I_{\text {min }} / I_{\text {max }}$
- Calculate error of the ratio
- Re-generate fit curve $f(x)$ with errors $\Delta f(x)$ for the calibration file substituting zeros for horizontal and vertical offsets ( $a, c$ ) and $\sigma$.


## Self-Calibration procedure

- Convolute it with Gaussian as follows:
- Propagate errors $\Delta f(x)$ through convolution, repeat convolution $N$ times varying $\sigma_{\text {conv }}$ from $O$ to $M$ with a fine step.
- For each iteration, find $I_{\min } / I_{\max }$ and calculate its errors resulting in calibration curve.


## Self-Calibration procedure



RREPS-11
ATF, EXT LW OTR, 20/23

## Calibration curve



## Self-Calibration procedure

- Propagate errors through calibration fit.
- Analyze all files in a data set, extracting $I_{\min } / I_{\max }$ and $\Delta_{t_{m a} / I_{m a}}$ for each file and convert it to real vertical RMS beam sizes using calibration fit parameters and its standard deviations.


## Reconstructed Q-scan



RREPS-11
ATF, EXT LW OTR, 23/23

## Calibration file variation



File number
RREPS-11
ATF, EXT LW OTR, 24/23

## Cursors gap variation



## Summary

- Results clearly demonstrate that the method based on the analysis of the PSF structure visibility gives an opportunity to measure the beam size with a submicrometer resolution.
- In order to improve the beam size measurement technique additional efforts toward the optimization of the optical system, and better understanding of the beam size effect has been taken.
- To be able to demonstrate better resolution achromat lens (to minimize the chromatic aberrations in the optical system) was employed.


## Summary

- Also a few more optical filters covering the wavelength range from 350 to 800 nm with 50nm step was used to investigate the spectral characteristics of the OTR PSF in details.
- The results will be represented in a successive paper.


## Acknowledgements

We would like to thank the ATF extraction line Laser-Wire collaboration for giving us an opportunity to conduct the experiment.

Work supported in part by the STFC LC-ABD Collaboration, the Royal Society, and by partial support from the "Grant-in-Aid for Creative Scientific Research of JSPS (KAKENHI 17GS0210)" project, European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no.227579, and Quantum Beam Technology Program of the Ministry of Education, Science, Sports, Culture and Technology of Japan (MEXT)

## Phenomena leading to PSF distortion

- Diffraction of OTR tails
- Chromatic aberrations
- Spherical aberrations
for instance, M. Castellano and V.A. Verzilov, Phys.Rev. ST-AB 1, 062801 (1998)



## Calibration of the optical system



Differentiated slope


Magnification factor of an optical System 10.69

## Calibration fit, residual



