

Recent Results on Top Physics at CMS

Silvano Tosi Institut de Physique Nucléaire de Lyon

on behalf of the CMS Collaboration

Outline

- Interests for the top-quark physics
- CMS and the LHC
- Inclusive tt cross-section measurements
- Charge asymmetry in tt pair production
- Search for Z' -> tt resonances in the m(tt) spectrum
- Single top production
- Top-quark mass

The Top Quark (I)

- The heaviest elementary particle known to date
 - \circ m = (173.3±1.1) GeV/c^{2*}; $\tau < 10^{-25}$ s
 - It decays before hadronization
 - BR(t->Wb) ~ 100%

• tt pair production via QCD: $\sigma \approx 158$ pb at 7 TeV

According to the W decay, we can have semileptonic (42%), dileptonic (10%) or hadronic (48%) tt pairs

• Single top production via EWK: $\sigma \approx 78$ pb at 7 TeV

W W g waaaaaaaaa W * arXiv:1007.3178 Silvano TOSI

The Top Quark (II)

- The top quark has a paramount importance at the LHC
- Tests of the performances of the detector
 - Almost all subdetectors are involved: final states with leptons, jets, missing energy
- It represents one of the largest backgrounds to other processes
- Important tool to verify SM predictions
 - $\circ~$ Verification of QCD calculations at the LHC environment
 - o m(top) is a fundamental ingredient of EWK fits
- Search for New Physics beyond the SM
 - $\circ~$ Preferential coupling of many NP models to the top sector
 - o several « top-like » signatures foreseen in these models

The LHC

The Data

• 2009:

- 12.5/µb pp at 900 GeV
- 0.5/µb pp at 2.36 TeV

• 2010:

- 47.03/pb pp at 7 TeV

- 8.38/µb heavy ions at 7 TeV

Ingredients for Top Physics (I)

- Several basic objects are involved
- Trigger requirements
 - $\odot~$ One electron, with minimum E_{T} > 10 (22) GeV/c (*), eff ~ 98%
 - One muon, with minimum $p_T > 9$ (15) GeV/c (*), eff ~ 92%
 - (*) different thresholds according to the data taking period
- Muons

quark jet

lepton

quark jet

muon

b-quark jet

Silvano TOSI

Ingredients for Top Physics (II)

- Particle flow algorithm used for jets and missing energy
 - Usage of the information from all subdetectors
 to determine the particle content of the events

• Jets

- $\circ~$ Uncertainty on the energy scale depending on $p_T/\eta :$ 3 to 5%
- \circ Uncertainty on the energy resolution ~ 10% $^{\circ}$
- Identification of the b-flavor content of jets (b-tagging)
 - Several algorithms available
 - Typical efficiency ~80% at a misID level of 10%
 - Typical eff uncertainty around 15%

Missing transverse energy

Measurements of $\sigma(t\bar{t})$

- Inclusive cross section with the semi-leptonic channel
 - CMS-PAS TOP-10-002 without b-tagging
 - CMS-PAS TOP-10-003 with b-tagging
- Inclusive cross section with the dileptonic channel
 - Phys. Lett. B 695, 424 (2011) with 3.1/pb
 - CMS-PAS TOP-11-002 with 36/pb
- Ongoing developments
 - Differential cross-section measurements
 - Channels with taus
 - All-hadronic channel

All measurements cross-checked with alternative methods

$\sigma(tt)$: Semileptonic Channel Without b-Tagging CMS-PAS TOP-10-002

Data

W→lv

 $Z/\gamma^* \rightarrow I^{\dagger}I$

Single-Top

QCD/y+iets

600

M3 [GeV]

700

Binned likelihood template fit to

- M3 = inv. mass of the 3 jets with largest \bigcirc vectorial summed p_T

CMS Preliminary

e+jets, N_{iets}≥ 4

100

140

200

160 E_T [GeV]

300

400

500

36 pb⁻¹ at √s = 7 TeV

Data-driven QCD template

25 Ge\

Events

Events / 5 GeV

250

200

150

100

50

٥<mark>٢</mark>

20

40

60

80

300 CMS Preliminary

_e+jets, N__=3

36 pb⁻¹ at √s = 7 TeV

80

60

40

20

100

120

Main systematics: jet-energy scale

 $\sigma_{t\bar{t}} = 173^{+39}_{-32}(\text{stat} + \text{syst}) \pm 7(\text{lumi}) \text{ pb}$

Silvano TOSI

$\sigma(tt)$: Semileptonic Channel With b-Tagging CMS-PAS TOP-10-003

- Binned likelihood fit to the secondary vertex mass
- **Data-driven templates**
- Systematics included as nuisance parameters in the fit

e+jets and mu+jets combined:

 $\sigma_{t\bar{t}} = 150 \pm 9 \text{ (stat.)} \pm 17 \text{ (syst.)} \pm 6 \text{ (lum.) pb.}$

σ(tt): Dileptonic Channel

CMS-PAS TOP-11-002

- ee, μμ, eμ channels
- Event counting in jet multiplicity bins
- Major systematics: background modelling and b-tagging efficiency

 $\sigma_{t\bar{t}} = 168 \pm 18 \text{ (stat.)} \pm 14 \text{ (syst.)} \pm 7 \text{ (lumi.) pb}$

$\sigma(t\bar{t})$: Combination

CMS-PAS TOP-11-001

CMS Preliminary, vs=7 TeV

Silvano TOSI

Charge Asymmetry CMS-PAS TOP-10-010

- tt pair production is symmetric (at the LO) in the SM
- NP can induce asymmetries!
- Tevatron reported a deviation from SM predictions (*)

Tevatron 4

LHC

top anti-top

top anti-top

Search for tt Resonances

CMS-PAS TOP-10-007

CMS Preliminary

- Resonances decaying to $t\bar{t}$ (*) can modify the m($t\bar{t}$) spectrum from **SM** predictions
- Tevatron excluded resonances up to 820 GeV in the « top-color assisted technicolor» model (**)

Likelihood template fit to m(tt)

Single Top

CMS-PAS TOP-10-008

• Successful example of extraction of a tiny signal!

Top Quark Mass

CMS-PAS TOP-11-002

- Important ingredient of SM tests!
- Only $ee/e\mu/\mu\mu$ so far. Result with semi-leptonic decays ready soon
- Two techniques

• Fully kinematic analysis

• Combination of the two methods:

 $m_{top} = 175.5 \pm 4.6 \, ({\rm stat.}) \pm 4.6 \, ({\rm syst.}) \, \, {\rm GeV/c^2}$

Silvano TOSI

Conclusions

- A lot of interesting results in the top sector!
- But we have just started !
- More results expected soon
 - More decay channels (all-hadronic, with taus)
 - Differential cross sections
 - \circ Measurement of several properties of the top quark and of tt pairs
- Becoming competitive with the Tevatron
- No major surprises wrt SM predictions so far... But a lot more data are already available for scrutiny!

BACKUP

Top Mass: Additional Info

Source	KINb	AMWT	Correlation factor	Combination
jet energy scale	+3.1/-3.7	3.0	1	3.1
b-jet energy scale	+2.2/-2.5	2.5	1	2.5
Underlying event	1.2	1.5	1	1.3
Pileup	0.9	1.1	1	1.0
Jet-parton matching	0.7	0.7	1	0.7
Factorization scale	0.7	0.6	1	0.6
Fit calibration	0.5	0.1	0	0.2
MC generator	0.9	0.2	1	0.5
Parton density functions	0.4	0.6	1	0.5
b-tagging	0.3	0.5	1	0.4

Method	Measured m_{top} (in GeV/ c^2)	Weight
AMWT	$175.8 \pm 4.9(stat) \pm 4.5(syst)$	0.65
KINb	$174.8 \pm 5.5(stat)^{+4.5}_{-5.0}(syst)$	0.35
combined	$175.5 \pm 4.6(stat) \pm 4.6(syst)$	$\chi 2/N_{dof}=0.040$ (p-value=0.84)

tt Cross Section (Semileptonic channel): Systematics

Table 6: List of systematic uncertainties for the combined electron and muon analysis. Due to the correlation between parameters in the fit, the combined number is not the sum of the squres of the contributions.

Source	Uncertainty (%)		
Systematic uncertainties			
Lepton ID/reco/trigger	3		
Unclustered E ^{miss} resolution	< 1		
tī+ Jets Q ² -scale	2		
ISR/FSR	2		
ME to PS matching	2		
PDF	3.4		
Profile likelihood parameters			
Jet energy scale and resolution	7.0		
b tag efficiency	7.5		
$W+$ Jets Q^2 -scale	9.1		
Combined	11.6		
	SourceSystematic uncertaiLepton ID/reco/triggerUnclustered E_T^{miss} resolutiontt+ Jets Q^2 -scaleISR/FSRME to PS matchingPDFProfile likelihood paraJet energy scale and resolutionb tag efficiencyW+Jets Q^2 -scaleCombined		

tt Cross Section (Dileptonic channel): Systematics

Table 1: Summary of systematic uncertainties relative to the rate of selected signal events estimated for the full signal selection. All values are in percent. Systematic uncertainties on the lepton selection are treated separately for e^+e^- and $\mu^+\mu^-$ final states. Except for the lepton selection uncertainty, correlated only in the same mode, values for a given source are 100% (anti)correlated among all modes, as reported with the same (opposite) sign. Different sources are treated as uncorrelated. The subtotal values are for sums in quadrature of all corresponding values in the same column.

	$N_{\rm jet} = 1$		$N_{\rm jet} \ge 2$	
Source	$e^+e^- + \mu^+\mu^-$	$e^{\pm}\mu^{\mp}$	$e^+e^- + \mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
Lepton selection	1.9/1.3	1.1	1.9/1.3	1.1
Lepton selection model	4.0	4.0	4.0	4.0
Hadronic energy scale	-3.0	-5.5	3.8	2.8
Pileup	-2.0	-2.0	0.8	0.8
b-tagging (≥ 1 b-tag)		/	5.0	5.0
Branching ratio	1.7	1.7	1.7	1.7
Decay model	2.0	2.0	2.0	2.0
Event Q^2 scale	8.2	10	-2.3	1.7
Top quark mass	-2.9	-1.0	2.6	1.5
Jet and E_T model	-3.0	-1.0	3.2	0.4
Shower model	1.0	3.3	-0.7	-0.7
Subtotal without b-tagging	11.2/11.1	13.1	8.0/7.9	6.2
Subtotal with b-tagging		\sim	9.5/9.4	8.0
Luminosity	4.0	4.0	4.0	4.0

Single top: systematics

	impact on				
uncertainty	correlation	2	D	BI	DT
		- +		- +	
statistical only	60	52		39	
shared shape/rate uncertainties:					
ISR/FSR for <i>tt</i>	100	-1.0	+1.5	< 0.2	< 0.2
Q^2 for $t\bar{t}$	100	+3.5	-3.5	+0.3	-0.4
Q^2 for V+jets	100	+5.7	-12.0	+2.6	-4.5
Jet energy scale	100	-8.8	+3.6	-5.1	+1.2
b tagging efficiency	100	-19.6	+19.8	-15.2	+14.6
MET (uncl. energy)	100	-5.7	+3.7	-3.9	-0.5
shared rate-only uncertainties:					
$t\bar{t}$ (±14%)	100	+2.0	-1.9	+0.5	-0.6
single top s (\pm 30%)	100	-0.4	+0.5	-0.4	+0.4
single top tW (±30%)	100	+1.1	-1.0	< 0.2	< 0.2
Wbb, Wcc (±50%)	100	-3.0	+2.9	+1.7	-1.9
$Wc \left({}^{+100\%}_{-50\%} \right)$	100	-3.0	+6.1	-2.4	+4.4
Z+jets (±30%)	100	-0.6	+0.7	+0.4	-0.2
electron QCD (BDT: ±100%, 2D: +130%)	50	+2.9	-3.7	-1.7	+1.7
muon QCD (BDT: ±50%, 2D: ±50%)	50	< 0.2	< 0.2	-2.1	+2.1
signal model	100	-5.0	+5.0	-4.0	+4.0
BDT-only uncertainties:					
electron efficiency (±5%)	0	_	_	-1.4	+1.4
muon efficiency ($\pm 5\%$)	0	-	_	-3.6	+3.5
V+jets (±50%)	0		_	-1.5	< 0.2
2D-only uncertainties:					
muon W+light (±30%)	0	-1.4	+1.4	—	_
electron W+light ($\pm 20\%$)	0	-0.6	+0.7	—	_
W+light model uncertainties	0	-5.4	+5.4	—	_
Silvano TOSI					

Charge Asymmetry: Systematics

Table 2: List of systematic uncertainties taken into account in the measurement of A_C . Listed are the positive and negative shifts induced by systematics in ensemble tests. For systematics uncertainties which shift A_C in only one direction only the maximal shift in this direction is quoted.

source of systematic	positive shift in A_C	negative shift in A_C
jet energy scale	0.017	-
jet energy resolution	0.007	-0.006
Q^2 scale	0.003	-0.007
ISR/FSR	0.005	-0.0006
matching threshold	0.004	-0.006
PDF	0.004	-0.011
b tagging	0.007	-
lepton efficiency	0.017	-0.018
QCD model	0.005	-0.005
overall	±0	.026

Z' Searches: Systematics

Uncertainty	Variation	Туре
Luminosity	4%	rate
Electron efficiency (trigger + ID + isolation)	5%	rate
Muon efficiency (trigger + ID + isolation)	5%	rate
tt cross section	20%	rate
Single top cross section	30%	rate
W+jets cross section	50%	rate
Ratio Drell-Yan to W cross section	30%	rate
Ratio W/Z+HF to σ (W)	100%	rate
Muon QCD yield	100%	rate
Electron QCD yield	100%	rate
Jet energy scale	$p_{\rm T},\eta$ dependent	shape
Jet energy resolution	10%	shape
Unclustered energy	10%	shape
b tagging efficiency (b jets)	15%	shape
b tagging efficiency (c jets)	30%	shape
Q^2 scale for W and Drell-Yan events	$\pm 1\sigma$ generator parameters	shape
tī modelling	$\pm 1\sigma$ generator differences	shape
Q^2 scale for t \overline{t} events	$\pm 1\sigma$ generator parameters	shape
Amount of ISR/FSR for tt events	$\pm 1\sigma$ generator parameters	shape
Matching scale for tt events	$\pm 1\sigma$ generator parameters	shape

Table 4: Summary of relative systematic uncertainties and whether they are rate- or shapechanging.

Jet Calibration

$$R(\eta^{probe}, p_{\rm T}^{dijet}) = \frac{2 + \langle B \rangle}{2 - \langle B \rangle} \qquad B = \frac{p_{\rm T}^{probe} - p_{\rm T}^{barrel}}{p_{\rm T}^{dijet}}$$

- MC response should ideally be ~ 1
- Deviations are due to a resolution bias effect intrinsic in the dijet balancing method.
 - Each reconstructed jet pt bin is contaminated with true jets of lower pt whose detector response fluctuated high
 - The effect is larger at larger eta
- Data agree well with simulation.
- A 10% deviation in data at high eta: this is due to higher single particle response in data:
 - corrected for by using residuals
 - residuals are defined as the difference between data and MC after extrapolating to 0 the third jet activity

LHC latest performances

- Technical stop ended a week ago
- Go to 768 soon and later 912 bunches
- Expect 1400 bunches by mid June $\circ L \sim 1.7 \ 10^{33} !$