

Alexandru T. Grecu

Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH)

LHCb Generators Tuning mini-Workshop (LHCb-MC)
Bucharest, November 22-23, 2012

<u>Outline</u>

- What is RIVET?
- Rivet Implementation in LHCb
- LHCb plugins
- Ideas for the future & Conclusions

What is RIVET?

- Robust Independent Validation of Experiment and Theory (rivet.hepforge.net) toolkit for Monte Carlo (MC) generator validation.
- Generator abstractization layer based on projections filter particles of interest and compute observable once per event for a suite of plugins
- Expects events in HepMC format (2.05 or later propagate xsection information);
 use A Generator Interface Library & executable for Fortran MC generators
- Histogram reference data in bundled files may be extracted from external databases – HepData (http://hepdata.cedar.ac.uk/)
- Used by both theoreticians and experimentalists for MC generator tuning & validation, analysis prototyping, MC-data comparisons
- May be run locally and in distributed system (CERNVM; Test4Theory LHC@home 2.0); on lxplus available through GENSER project (http://sftweb.cern.ch/generators/)
- RIVET plugin == piece of C++ code (Rivet::Analysis derived class) + meta and reference data + histogram style information – stored in separate files
- Main component of the Professor tuning tool for MC event generators

What is RIVET? **Experimentalist Community** 3...... **Theoretical Models** (New) MC Generators ٦..... Exp. Data **Analysis** Results **Theoretician Community**

RIVET implementation in LHCb

- interface in package **Gen/GenTune** part of GAUSS project
- using Rivet from GENSER repository through MC Generator Interfaces
- offers ability to run RIVET plugins through *RivetAnalysisHandler* Gaudi algorithm (credit to <u>Andy Buckley</u> for providing the skeleton interface)
- new package (v1r0) released with GAUSS v42r2
- only available in Gauss Generator phase (HepMC 2.06.05 input)
- instructions to run and design new plugins to appear on twiki (by the end of 2012) https://twiki.cern.ch/twiki/bin/view/LHCb/GenTuneWithRivet
- \$GENTUNEROOT/options/example for basic instructions and working example
- code tested daily thanks to QMTest(s)

RIVET implementation in LHCb

RivetAnalysisHandler initializes libRivet.so, controls the run and adjust HepMC events according to options:

- ★ MCEventLocation HepMC data location in Transient Event Store (TES)
- ★ BaseFileName the name of the file (w/o extension) where histograms are saved
 What AIDA?
- * RunName the AIDA directory where output histograms are stored
- * Analyses list of analysis names that one wants to run (invalid ones are automatically discarded)

 Still AIDA?!
- * StreamName should control the AIDA axis/path where data is stored
- * AnalysisPath supplemental paths to be searched for analysis plugins
- ★ CorrectStatusID flag to enable code that corrects the status ID of particle to match Pythia's status code scheme (bug to be solved in v1r1!)
- ★ CorrectCrossingAngles flag to enable/disable code that detects at run-time the beam crossing angles from BeamParameters class and perform the boost back to center-of-mass system accordingly

RIVET implementation in LHCb

RivetAnalysisHandler initializes libRivet.so, controls the run and adjust HepMC events according to options:

* XsectionNeeded, xSectionValue – flags to force the algorithm to check that cross-section value is provided and the alternative value of the cross-section if not provided in HepMC (obsolete)

Logging level is set automatically according to Gaudi log level using a simple mapping.

Released plugins (Rivet 1.8.1, July 2012)

- LHCB_2011_I917009 Measurement of V^0 production ratios in pp collisions at sqrt(s)=0.9 and 7 TeV, JHEP08:034,2011
- LHCB_2011_I919315 Measurement of the inclusive phi cross-section in pp collisions at sqrt(s) = 7 TeV, Phys.Lett.B703:267-273,2011
- LHCB_2010_S8758301 Prompt K_short production in pp collisions at $sqrt(s)=0.9 \ TeV$, Phys.Lett.B693:69-80,2010

LHCb Rivet plugins

Plugins in final phase of development

- LHCB_2012_I1119400 Measurement of prompt hadron production ratios in pp collisions at \sqrt{s} = 0.9 and 7 TeV, Eur.Phys.J. C72 (2012) 2168
- LHCB_2012_I1082369 Measurement of charged particle multiplicities in pp collisions at \sqrt{s} =7TeV in the forward region, Eur.Phys.J. C72 (2012) 1947
- LHCB_2011_I891233 Measurement of J/ψ production in pp collisions at $\sqrt{s}=7$ TeV, Eur.Phys.J. C71 (2011) 1645
- LHCB_2010_I867355 Measurement of $\sigma(pp \rightarrow b\overline{b}X)$ at $\sqrt{s}=7$ TeV in the forward region, Phys.Lett. B694 (2010) 209-216

On wish list:

• LHCB_2012_I1091071 - Measurement of Upsilon production in pp collisions at sqrt(s)=7 TeV, Eur.Phys.J. C72 (2012) 2025

Thanks to P. Skands, Sercan Sen and corresponding authors from LHCb...

Ideas for the future & Conclusions

- Use Professor and Rivet to create/test/validate new LHCb tunes
- Use Rivet as alternative MC validation tool for GAUSS
- Deploy Rivet on grid via LHCb software framework
- Write some Python scripts to help developers (e.g. hardcoding LHCb particle table - lifetime)
- Convince LHCb members to submit new and more complex analysis plugins for published results
- Where are your plugins currently used? (Quick example if local connection doesn't break)

BACKUPS

Who is this guy?

"The Thinker of Hamangia and his consort"
Clay figurines iconic for the Late Neolithic Hamangia culture (~5200 BC) discovered in present day Baia (Tulcea county), Dobrogea, Romania (1952).

