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Recall factorization formula
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To iImprove theoretical predictions, need to:
1) Evolve PDFs as accurately as possible:

Pj;°(2) + asPj-C(2) + a2 PN-C(2)

1973 1977 2004 (Moch, Vermaseren , Vogt)

2) Compute higher-order corrections to partonic
cross section 5ab—X  for as many processes
as possible
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Short-Distance Cross Section
INn Perturbative QCD

o(as, i, kr) = [as(ur)]™ [3(O)+
LO

« Estimate “error” bands by varying

HR = pF = p

Example: Z production at Tevatron

as function of rapidity Y
(~polar angle)

50% shift, LO = NLO
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Leading-order (LO) predictions only qualitative:
Expansion in «s(.) behaves poorly
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QCD corrections in a nut-shell

“Trivial” example: Z production at hadron colliders

was the NLO
bottleneck

LO &

dim.reg. D =4 — 2¢
first, cancel infrared

NLO divergences (1/¢%)
between virtual & real
NNLO &@ .
q 51 a’ g
00ps
bottleneck intricate ( 1/¢7) IR cancellations
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Beyond Feynman Diagrams

SAAAAARAAARANAAANYDN
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« Feynman diagrams are very general and powerful

 However, for many applications, on-shell methods based on
analyticity are a much more efficient way to get the same
answer.

 They also give new insight into structure and properties of
scattering amplitudes, not only in QCD
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Just one QCD loop can be a challenge

pp 2 W +njets (Just amplitudes with most gluons)
# of jets # 1-loop Feynman diagrams
g v
N
g q
, ;O; . Current limit with
Feynman diagrams
3 m 1,253
4 m 16,648
5 256,265 Current limit with
on-shell methods
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The Analytic S-Matrix

1z
Bootstrap program for strong interactions: Reconstruct scattering :
amplitudes directly from analytic properties: “on-shell” information w

Landau; Cutkosky;

Pz___ 0 Chew, Mandelstam;
) Eden,Landshoﬁ,
P Olive, Polkinghorne;
Veneziano;

:
I
p— !
]
I
|

* Poles

Virasoro, Shapiro;
... (1960s)

* Branch cuts

Im

|
|

P—b
Analyticity fell out of favor in 1970s with the rise of QCD & Feynman rules

Now resurrected for computing loop amplitudes in perturbative QCD as
alternative to Feynman diagrams! Perturbative information now
assists analyticity. Works for many other theories too.
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Granularity vs. Plasticity

RICHARD FEYNMAN

AAAAARAARAAARNAANN
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Recycling "Plastic™ Amplitudes

Amplitudes fall apart into simpler ones in special limits
— pole information

[ 2 )

® O Treesrecycled into trees

-

BCFW recursion relations
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How to organize
gauge theory amplitudes

« Avoid tangled algebra of color and Lorentz indices
generated by Feynman rules

Py
q
k | |
%@mc = igs o0 — Q) p + 1pu(a — k)v + 1w (k — p))]
L4
v . p structure constants

- Take advantage of physical properties of amplitudes

* Basic tools:
- dual (trace-based) color decompositions
- spinor helicity formalism

L. Dixon  QCD at Colliders Lecture 3 June 14, 2012 10



C O I O r Book by Cvitanovic

Standard color factor for a QCD graph has lots of structure
constants contracted in various orders; for example:

as
aj
a4 y b o falazb fa3a4c fbca5

as a2

We can write every n-gluon tree graph color factor as a sum

of traces of matrices T @ in the fundamental (defining)
representation of SU(N,):

Tr(7T%17% ...7T%)  + all non-cyclic permutations

Use definition:  [7¢, T°] = i febe e

be — _ . b :
+ normalization; Tr(797T?) = s 2 for == Tr([T%, T°] T°)
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Color In pictures

Insert %gy = £ = THTATE T = }?Cj - B??v
and

b

J i _
E = (T2 i _1
where (T%) IS color factor for qgg vertex NCD -

a

into typical string of f 2¢ structure constants for a Feynman diagram:

= + permutations = Tr(T1792...T%)
+ permutations

» Always single traces (at tree level)
o Tr(T17%2...7%) comes only from those planar diagrams

with cyclic ordering of external legs fixed to 1,2,...,n
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Trace-based (dual) color decomposition

Similarly @99 ---g amplitudes = (T%17%2...T)]
+ permutations

In summary, for the n-gluon trees, the color decomposition is

AT ({ky i, hi}) = gi 2 Tr(TOT2 . 10n) ATR(1F, 2Rz, pfny

4 X -+ non-cyclic perm’s N

/
momenta f L \

color  helicities -
he = +1 color-ordered subamplitude only depends on momenta.
! Compute separately for each cyclicly inequivalent
helicity configuration (h1,ho, ..., hn)

« Because Any®e(1",2"2,....n") comes from planar diagrams

with cyclic ordering of external legs fixed to 1,2,...,n,
it only has singularities in cyclicly-adjacent channels s;;,; , ...
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Color-ordered Feynman rules

In Feynman gauge, use these “color-stripped” rules

q
koo
V}m—h = E (pr(p - Q),u + TYP;L(q - k)y + n,ur/(k _pJP)
p

H v :
= an pllux — 2 (77;11/77()/\ + 77!.1)\77!4))
e v i
>'mr \/—% 0= Ty
V4

in the (1 ,2,...,n)-ordered planar diagrams, to compute
A}:Lree(lhlj 2h2, o ,?’Lhn) A%ree(lg, 2(—;—, 3’13, el nhn)
9g9---g 9999 - g
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Aside: Strings and Col r

» The “trace” color basis for QCD is also called the “dual” basis
because it first arose, as Chan-Paton factors in the description

of SU(N) symmetric dual models (string theories)

— initially it was describing flavor!

« A modern string theorist would say that a string end moves from
one of N D-branes to another by emitting a green-antiblue gluon
* Also related to ‘t Hooft double-line formalism

T8 T
x X
)V o )
/7 \X o
‘t Hooft dual D-brane
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Color sums

In the end, we want to sum/average over final/initial colors

(as well as helicities): dot®® oc 57N AN ({ky, a4, R )|
@i h;
Insert:
AT ({kiyai hi}) = gl PTr(TOT2 .. T) AFTee(1M, 202, nfn)

+ non-cyclic perm’s

and do the color sums diagrammatically:

1
_ n _ n
= N, = N x N—CQ

to get:

Exercise:
Convince
yourself
of this!

dote® o NI' 3" YAl (0 (1), 0(22), ..., 0(n"))[7 + O(N, ?)

- Up to 1/N_? suppressed effects, squared subamplitudes have
definite color flow — important for development of parton shower
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Spinor helicity formalism

Scattering amplitudes for massless
plane waves of definite momentum:
Lorentz 4-vectors k# ki>=0

Natural to use Lorentz-invariant products
(invariant masses): s;; = 2k; - kj = (k; + k;)?

But for elementary particles with spin (e.g. all observed ones!)
there is a better way:

Take “square root” of 4-vectors k# (spin 1)
use Dirac (Weyl) spinors u (k) (spin ¥2)
right-handed: (X\;)a = ug(k;) left-handed: (\;)q = u_(k;)

0,07, all have 2 helicity states,  J, — —+ _O» _0#
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Massless Dirac spinors

* Positive and negative energy solutions to the massless
Dirac equation, #«(k) =0, Fuv(k) =0
are identical up to normalization.
« Chirality/helicity eigenstates are
us (k) = 5(LEy5)u(k), ve(k) = 5(1+75)v(k)
« Explicitly, in the Dirac representation,

VEkT \//Fff_wk iy }l.l + 5,11'2
. L | Vet N T /= L :
u“ﬁ):e;(\ﬂ):ﬁ { \/F ] , ”_(‘M—MM—E [vfwwk] \/(\A-1)2+(A‘2)2
et N4 ax
A ¢ ll\ llf:l: — A‘O 0 11‘3
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Spinor products

Instead of Lorentz products: ~ sij = 2k; - kj = (k; + k;)?
Use spinor products: 4 (k;)uy (k;) = gaﬁ()\i)a()\j)ﬁ = (i 7)

iy (ku—(k;) = e (X)a(X;) 5 = [i 7]

Identity &' (0p)aa = (Kidaa = ut(k)uy (k) = (A)a(N)a
—> These are complex square roots of Lorentz products (for real k.):
(ij)[ji] = T [}éz }fj] = 2k; - kj = si;

(ij) = \/sij €' [ji] = \/s5e Vi
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Most famous (simplest) Feynman diagram

2 ¢ ar add helicity information,
Y numeric labels
: 7,
o _ Ag = 2’1,82@6@(](5?::144
1 L qVL 4
A = v (k) u (k) w(ka)uon (ka) Flerzidentty |
8112 | s €L W R L I i
= 5 (aa(2)* (D) (07 (R3)5(Na)g
$12
1 ary Q& Ky — " y
= s (A2)% (A1) (Aa)a(A3)a = T
) 4 -
(24)[13] 513 —el? helicity suppressed
Ag = s | 6“’55: (1—-cosf) as 1|3 or 2|4
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Ag

Useful to rewrite answer

2->\WM< )
A

1+

(24)[1 3]

B 512
(24)[13](13)

Crossing symmetry more manifest
if we switch to all-outgoing helicity labels
(flip signs of incoming helicities)

useful identities:

(12)[21] (13)

(24)[24](24)

(12)[24](4 3)

(24)°
(12)(34)

or

L. Dixon

Ay =

[13]°
[12][34]

QCD at Colliders

“antiholomorphic”

“holomorphic”

Lecture 3

(ij) = —{1)
lij] = =il
(ti) = [ii] =0
(ij) [71] = sy
Y. @ikl = 0
j=1
12 = 834
$13 — $24
@i){kl) — (ik)(Gl) = (il){kj)
Schouten
June 14, 2012 21




Symmetries for all other helicity config’s

paue

(14)2
— T {12y(34)

—

[24]° 1
A4 — [12][34] 4 — [1[2]1-3 4]
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Unpolarized, helicity-summed cross sections

(the norm in QCD)

do(etTe™ = qq) > (24)2 |2 (14)2 2
d cos 6 O<h§ez|.|A4| o 2“(12}(34)‘ +‘(12)(34)‘}
— 2334"‘3%4
<2
12

— % [(1 — cos8)? + (1 + cos8)?]
— 1+ cos?0
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Reweight helicity amplitudes -
electroweak/QCD processes

For example, Z exchange

e o] i _
L,R eL,R q
e q
v (9 S
S — MZ —I— ”’I_ZMZ
;21 —2Qpsin?6y ; 2Qssiney
‘L= sin 26y "R~ T sin 26y
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Next most famous pair
of Feynman diagrams

(to a higher-order QCD person)

| M Ao = 20QeQuI s
g 4"

i e q 5 _ (25) (1F|(F3+ Ka) #5137)
512 V2 s34
[13](27|(Kat+ Ks)#4 |5T)

e’ q
M g i w12 V2 sas
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Helicity formalism for massless vectors

Berends, Kleiss, De Causmaecker, Gastmans, Wu (1981); De Causmaecker, Gastmans, Troost, Wu (1982);
Xu, Zhang, Chang (1984); Kleiss, Stirling (1985); Gunion, Kunszt (1985)

ey = etk q) = (T [yula ™) reference vector g~
o e \/§<7’Q> is null, g2 =0
V289 dlg™) =0
(FD)ae = £ (kiyg) = Y2212
(i q)
obeys ez-+ -k; =0 (required transversality)

s,fr +q=20 (bonus)

under azimuthal rotation about k; axis, helicity +1/2 5\? — €i¢/25\?

helicity -1/2 A§ — ei9/2)¢

+ A ' + : ..
so £, xE e'? #; as required for helicity +1
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eTe” — qgg (cont)

(25) (1| (Ka+ Ka) #7137)
512 V2534
L (131627 |(Kat Fs)£415T)
5192 V2 845
(25) (1T |(fz+ Ka)lgT)[4 3]

Ay =

S12 $34(45) Choose ¢ = ks
L 3127 CKat £)147005) | 0 remove 2 graph
$192 s45(45)

(25) (1T|(K3+ k4)[5T)[43]

512 534(45)
(25)[12](25)[4 3]

(12)[21](34)[43](45)
B (2 5)?
© (12)(34)(45)
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Properties of As(eTe™ — qgq)

SaonBsRaeH 4 — O

(25)2 _ (35) (25)2
(12)(34)(45) _ (34)(45)  (12)(35)
— 8(3,47.5) x 4411, 27,31T . 57)

As =

Universal “eikonal” factors S(a,st,b) = <a<8a> 2 )
for emission of soft gluon s I [0 b)]
between two hard partons a and b S(a,s7,b) = — [a s][s b]

Soft emission is from the classical chromoelectric current:
iIndependent of parton type (g vs. g) and helicity
— only depends on momenta of a,b, and color charge:

eT (ke e (@)-ky (aq) (bg) _ (ab)

ka-ks kyks S Tsqi{as)  (sq)bs) _ (as)(sb)
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Properties of As(eTe™ — qgg) (cont.)
2. Colinearbehavior| ©=|/+4: k3= zkp, ka=(1-2)kp

kp=ks+ ks, k%—0
)\3%\/5)\p, A~ /1 —zAp, etc.

A = (25)2 1 (25)°

(12)(34)(45) ~ VI—2(34)  (12)(P5)

t (3t at T
— Split_(3,,44) X A4(17,27,P7,57) Time-like kinematics

.| (fragmentation).
5 b 2 Z Space-like
(parton evolution)
b b 1-7 related by crossing

Universal collinear factors, or splitting amplitudes
Split_y, ,(al, b") depend on parton type and helicity %
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Collinear limits (cont.)

MR S D =
R

. J
Applying C and P: Split_(ag b, ) =

- V1—=z[ab]

Universality can be argued various ways, including from
factorization + operator product expansion in string theory:

Mangano, Parke, Phys. Rept. 200, 301 (1991)
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Simplest pure-gluonic amplitudes

Note: helicity label assumes particle is outgoing; reverse if it's incoming

Strikingly, many vanish: T Op- * + oo S T
A}Lree(lin 2+7 Tt an+) — " :'/ . . = B . '. — O
s allle ¢ + 00! .
p s + ‘ N\ +

Maximally helicity-violating (MHV) amplitudes:
Ay MRV — o gqtreeq+ oF i i, nT)

T 1 ¥

J +

2 . w4
= 7 _— (27)
\ : (12)(23)---(n1)
- (-0 Parke-Taylor formula (1986)

[

Remarkable simplicity — has inspired many formal developments
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MHV amplitudes with massless quarks

more vanishing ones: Afee(1z, 28,37, .,

the MHV amplitudes:

Agree(lg,Qj,...,r,...,n+) —

Related to pure-gluon MHV amplitudes by a secret supersymmetry:
after stripping off color factors, massless quarks ~ gluinos

Grisaru, Pendleton, van Nieuwenhuizen (1977);
Parke, Taylor (1985); Kunszt (1986); Nair (1988)
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Properties of MHV amplitudes
1. Verify soft limit (i) _ e (i)

(12)---{(as)(sby---(n1l) (as)(sb)y(12)---(ab)---(nl)
ks — 0 — Soft(a,st,b) x A9 MHV

RGeS |1 (0= o+ )
(i5)* (i5)*
(12)---(a—1,a){ab){b,b4+1)---(n1l) /2(1_2 ){a b) (12)---(a—1,P)(P,b+1)---(nl)

— Split_(a™,bH) x 4% MAV
So
Split_(at,bT) = L
plit_(a )= i (ab)

2

) — oy — z
and  SPlity (a7, b7) = Z=srrs plus parity conjugates

Split_|_(0u+, b™) = \/Zgi_zg(ab)
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Spinor Magic

Spinor products precisely capture
square-root + phase behavior in collinear limit.
Excellent variables for helicity amplitudes

scalars 0 % o 1
0 p Sij
gauge theory +1 .
etid 1 1

~N ———r~ — Of +—=

1™ V2 G O T

angular momentum
mismatch
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From splitting amplitudes to probabilities

2
a a
b b
Ee e o Ea
1
dop ~ do,_1 X — X P(z) [N-f ]
Sab ~ e
P(z) o Y [Split_p,(a",b")]% sy,
hp,ha,hyp
Vv
q — qg- 1 |? 2
Pyq(z) o« Cp +|—= Op = N1
vV1—2z vV1—2z F 2N¢
2
= Cpl Tz z <1
1l -2

Note soft-gluon singularityas zg =1 —2z — O
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Space-like splitting

* The case relevant for parton evolution
» Related by crossing to time-like case
« Have to watch out for flux factor, however

q—49. kp=xks, k4= (1—2x)ks x

(25)2 x (2 P)2 q ix 9
As = ~ — X 5 g 4t
(12)(34)(45) /l-zas) (12)(3P) 4

1 1 (2 P)?

Jivi—z(45) " (12)(3P)

: d 1
\ absorb into flux factor: 75 % 515

dog 1 —_1
S1pP I S15

When dust settles, get exactly the same splitting kernels (at LO)
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Similarly for gluons

g % gg: 1 2 22 2 (1—2)2 2
Fog(2) o € Vz(1 —2) i vV z2(1— 2) * Vz(1 —2)
B 14244 (1—-2)% o
= Ca z(1 - 2) OA = Ne
— QCALiz+1;z+z(1—z)] 2<1

Again a soft-gluon singularity. Gluon number not conserved.
But momentum is. Momentum conservation mixes g — gg with

N

979G | pg(z) = Tp[24 (-2 Tp =

(can deduce, up to color factors, by taking

et |le in Ag(eTe™ — qgq) ) Exercise
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Gluon splitting (cont.)

g — gg:.  Applying momentum conservation, |
. Exercise:
/O dzz [Pyg(2) + 2npPyy(2)] = 0 Work out by,
gives | () = 20, (1zz)++1;"+z(1—z)] + bo8(1 - 2)
11C 4 — 4ny T,
bo = -

Amusing that first B-function coefficient enters,
since no loops were done, except implicitly via unitarity:

o + oy + i+ ey
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