

E/p studies @ high Pt an update

High pT egamma meeting

Emmanuel Laisné, Fabienne Ledroit, Caterina Monini – LPSC Grenoble

Introduction/outline

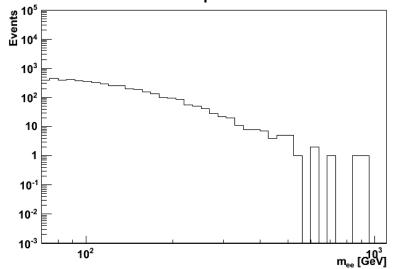
- Update of study presented on 21th april Z' weekly
 - Included MC/data comparison for background
 - Corrected a bug in reverse ID template
 - Derived customed E/p cuts efficiencies
 - Behaviour of E/p @ high pT for Jet MC samples (Caterina Monini)

E/p -> MC/data comparison

Samples

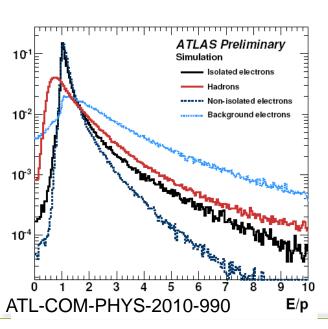
Data - period G to I (2010)

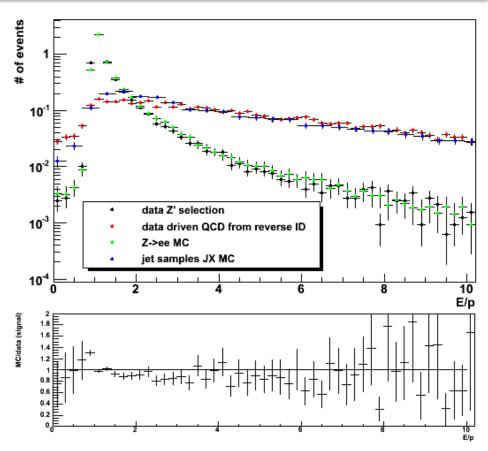
- Electrons from standard Z' selection as a signal data sample
- Used reverse Id QCD background templates as a background data sample
 - Electrons pass Z' preselection until loose + blayer and fail medium identification


MC

- MC10 Zee sample (106046)
- MC10 Jet samples JX (105009-105015)

Reverse ID QCD template


- Sarah's method
- Corrected a bug since last meeting
- Sample shows no Zee peak
 - Contamination was evaluated by Sarah to be ~1%
 (Z'-> ee backup note)


Reverse ID sample invariant mass

E/p -> MC/data comparison (2)

- Good agreement MC/data on signal
- Background shows faire agreement
 - QCD templates and MC sharing same preselection
 - Not requiring failing medium on MC
 - Peak @ E/p ~1 not seen any more
 in background since bug correction

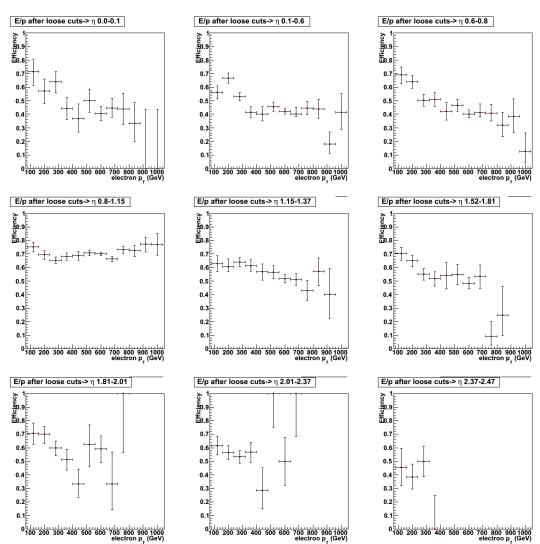
- Have to understand shape of E/p
 - -> will try to examine High energy hits ratio in TRT to determine hadrons components
 - -> ...
- Plan to switch to 2011 data and MC this week

E/p cut - Signal vs background

- Derived signal and background efficiencies for E/p cut from data
 - Tried several E/p upper bound -> 5 / 8 / 10 /12 /15 / customed cuts (values in backup)
 - All eta value mixed
 - Add pT > 80 GeV cut (last Egamma Et bin)

Single electron

	E/p < 5	E/p < 8	E/p < 10	E/p < 12	E/p < 15	customed
Signal (%)	94.9	95.7	97.0	97.0	99.2	96.6
Background (%)	29.2	43.8	52.8	58.3	66.2	54.2
ε(S)/ε(B)	3.3	2.2	1.8	1.7	1.5	1.8

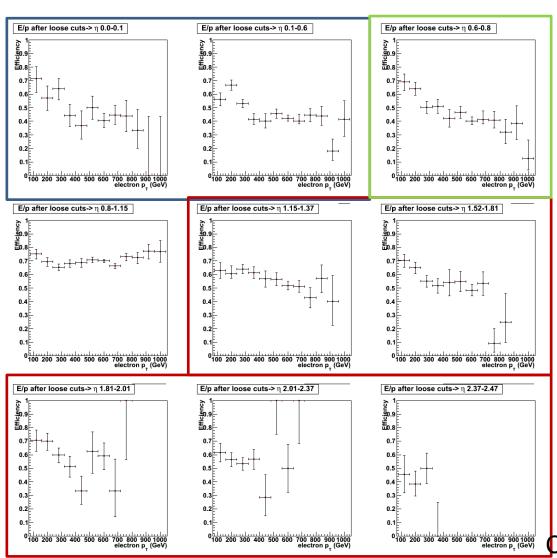

di-electron event

	E/p < 5	E/p < 8	E/p < 10	E/p < 12	E/p < 15	customed
Signal (%)	84.6	88.5	100	100	100	96.2
Background (%)	9.4	21.2	28.2	30.6	41.2	30.6
ε(S)/ε(B)	9.0	4.2	3.5	3.3	2.4	3.1

- efficiencies computed w.r.t medium + blayer -> signal / w.r.t loose + blayer -> background
- Baseline for set of customed cut to be changed -> for now not achieving better than E/p < 10

E/p @ high pT (Jet samples)

E/p efficiency w.r.t loose identification (fake e+-) -> standard cut E/p < 10

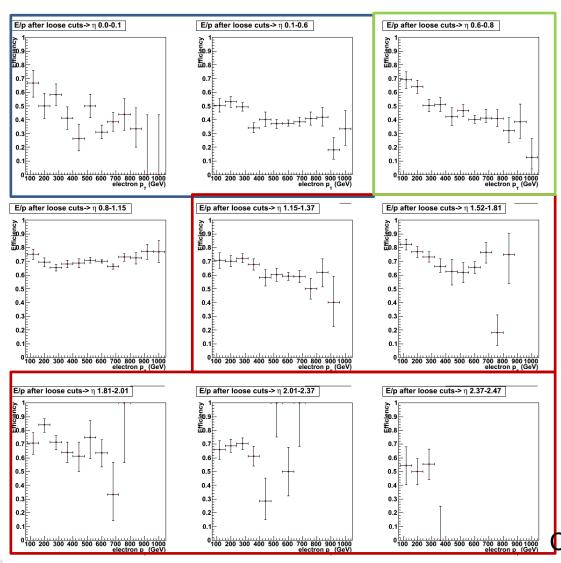


Efficiency slightly decreasing with pT

Caterina Monini

E/p @ high pT (Jet samples -background)

E/p efficiency w.r.t loose identification (fake e+-) -> standard cut E/p < 10


Efficiency slightly decreasing with pT

Customed cuts

Caterina Monini

E/p @ high pT (Jet samples)

E/p efficiency w.r.t loose identification (fake e+-) -> customed cuts

- Relaxing cuts @ large eta
 - Low rejection whereas our signal is mainly at low eta
- Tightening cut @ low eta
 - Not improving that much rejection but rather efficient on signal

Customed cuts

E/p < 8

E/p < 12

E/p < 15

Caterina Monini

BACKUP

Event selection (MC)

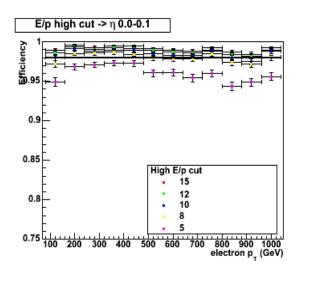
Dataset used

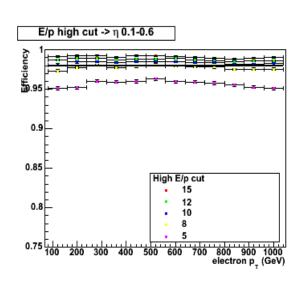
group10.phys-sm.mc10_7TeV.115494.Pythia_Zprime_ee.recon.AOD.e670_s933_s946_r1831_tid243875_0.WZphys.101222.07.D3PD/

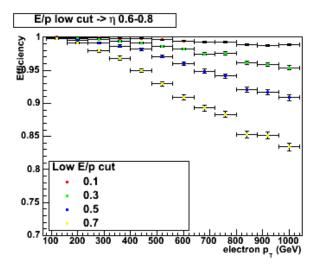
Preselection :

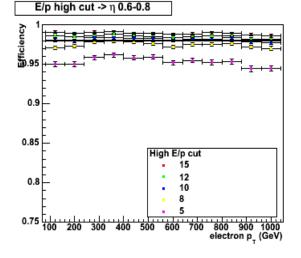
- Trigger: L1_EM14
- N primary vertex >2
- el author = 1 or 3
- $|\eta| < 2.47 + \text{crack region } (1.37 < |\eta| < 1.52) \text{ excluded}$
- E_⊤ cluster >25 GeV
- Object quality
- Medium isEM

Determined E/p efficiency vs p_T

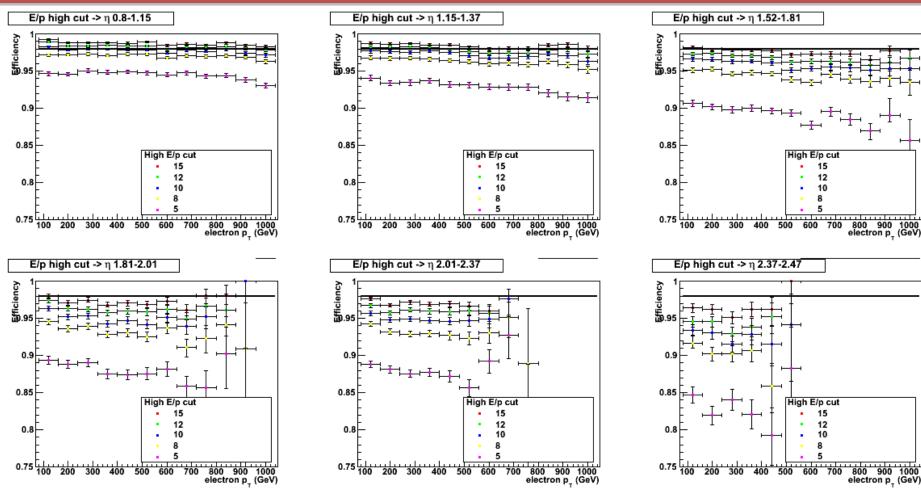

- Efficiency is computed from leading and subleading electron passing preselection
- $-9|\eta|$ slices reflecting isEM ones for calorimeter variables


Customed E/p (1)


Removed E/p lower bound


- No clear optimisation possible @ high pT
- Efficiency dropping @ high pT with « loosest » cuts

- First try of E/p upper bound optimisation
 - Baseline -> keep rather constant efficiency w.r.t $\,\eta$ bins As much independent as possible of η distribution (Z^*/Z')
 - Arbitrary choice of 98% efficiency w.r.t medium ID -> consistent with sanity cut



Customed E/p (2)

- Efficiency dropping with eta for a fixed cut value
- Defined a customed set of cuts
 - η 0 0.1 0.6 0.8 1.15 1.37 1.52 1.81 2.01 2.37 2.47
 - [8.0; 8.0; 10.0; 10.0; 12.0; 15.0; 15.0; 15.0; 15.0; 15.0]